MATLAB®

Programming Fundamentals

A

MATLAB

R2017a «} MathWorks:

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB Programming Fundamentals
© COPYRIGHT 1984-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2004 First printing New for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Second printing Minor revision for MATLAB 7.0.4
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)
March 2008 Online only Revised for Version 7.6 (Release 2008a)
October 2008 Online only Revised for Version 7.7 (Release 2008b)
March 2009 Online only Revised for Version 7.8 (Release 2009a)
September 2009 Online only Revised for Version 7.9 (Release 2009b)
March 2010 Online only Revised for Version 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release
2015aSP1)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)

March 2017 Online only Revised for Version 9.2 (Release 2017a)

Contents

Language

Syntax Basics

1

Continue Long Statements on Multiple Lines 1-2
Call Functions 1-3
Ignore Function Outputs 1-4
Variable Names 1-5
Valid Names 1-5
Conflicts with Function Names 1-5
Case and Space Sensitivity 1-7
Command vs. Function Syntax 1-9
Command and Function Syntaxes 1-9
Avoid Common Syntax Mistakes 1-10
How MATLAB Recognizes Command Syntax 1-11
Common Errors When Calling Functions 1-13
Conflicting Function and Variable Names 1-13
Undefined Functions or Variables 1-13

vi

Contents

Program Components

2|

MATLAB Operators and Special Characters

Arithmetic Operators
Relational Operators
Logical Operators
Special Characters

String and Character Formatting

Array vs. Matrix Operations

Introduction
Array Operations

Matrix Operations

Compatible Array Sizes for Basic Operations
Inputs with Compatible Sizes
Inputs with Incompatible Sizes

Examples

Array Comparison with Relational Operators

Array Comparison

Logic Statements

Operator Precedence

Precedence of AND and OR Operators
Overriding Default Precedence

Average Similar Data Points

Group Scattered Data Using

Conditional Statements

Loop Control Statements . . .

Regular Expressions

Using a Tolerance

a Tolerance

What Is a Regular Expression?
Steps for Building Expressions

Operators and Characters

2-2
2-2
2-2
2-3
2-3
2-10

2-14
2-14
2-14
2-17

2-20
2-20
2-23
2-24

2-26
2-26
2-29
2-30
2-30
2-31
2-32
2-35
2-38
2-40
2-42
2-42

2-44
2-47

Lookahead Assertions in Regular Expressions 2-57

Lookahead Assertions 2-57
Overlapping Matches 2-57
Logical AND Conditions 2-58
Tokens in Regular Expressions 2-60
Introduction 2-60
Multiple Tokens 2-61
Unmatched Tokens 2-62
Tokens in Replacement Text 2-63
Named Capture iiiiinennoon. 2-64
Dynamic Regular Expressions 2-66
Introduction 2-66
Dynamic Match Expressions — (??expr) 2-67
Commands That Modify the Match Expression — (??
@emd) ... 2-68
Commands That Serve a Functional Purpose — (?
@emd) ... 2-69
Commands in Replacement Expressions — ${cmd} . . . 2-71
Comma-Separated Lists 2-74
What Is a Comma-Separated List? 2-74
Generating a Comma-Separated List 2-74
Assigning Output from a Comma-Separated List 2-76
Assigning to a Comma-Separated List 2-77
How to Use the Comma-Separated Lists 2-79
Fast Fourier Transform Example 2-81
Alternatives to the eval Function 2-83
Why Avoid the eval Function? 2-83
Variables with Sequential Names 2-83
Files with Sequential Names 2-84
Function Names in Variables 2-85
Field Names in Variables 2-85
Error Handling 2-86

vii

viii

Classes (Data Types)

Overview of MATLAB Classes

3

Fundamental MATLAB Classes

Numeric Classes

4

Integers
Integer Classes
Creating Integer Data
Arithmetic Operations on Integer Classes
Largest and Smallest Values for Integer Classes

Floating-Point Numbers
Double-Precision Floating Point
Single-Precision Floating Point
Creating Floating-Point Data
Arithmetic Operations on Floating-Point Numbers
Largest and Smallest Values for Floating-Point Classes
Accuracy of Floating-Point Data
Avoiding Common Problems with Floating-Point

Arithmetic

Complex Numbers
Creating Complex Numbers

Infinity and NaN
Infinity
NaN .. e

Identifying Numeric Classes

Display Format for Numeric Values

Default Display

Contents

4-2
4-2
4-3
4-4
4-5

4-7

4-7
4-8

4-11
4-12

4-14

4-17
4-17

4-18
4-18
4-18
4-21

4-22
4-22

Display Format Examples 4-22
Setting Numeric Format in a Program 4-23

The Logical Class

S|

Find Array Elements That Meet a Condition 5-2
Apply a Single Condition 5-2
Apply Multiple Conditions 5-4
Replace Values that Meet a Condition 5-5

Determine if Arrays Are Logical 5-7
Identify Logical Matrix 5-7
Test an Entire Array 5-7
Test Each Array Element 5-8
Summary Table 5-9

Reduce Logical Arrays to Single Value 5-10

Truth Table for Logical Operations 5-13

Characters and Strings

6/

Represent Text with Character and String Arrays 6-2
Create Character Arrays 6-5
Create Character Vector 6-5
Create Rectangular Character Array 6-6
Identify Characters 6-7
Work with Space Characters 6-8
Expand Character Arrayso.... 6-9
Create String Arrays 6-10
Cell Arrays of Character Vectors 6-19
Convert to Cell Array of Character Vectors 6-19

ix

X

Contents

7]

Functions for Cell Arrays of Character Vectors 6-20

Analyze Text Data with String Arrays 6-22
Test for Empty Strings and Missing Values 6-29
Formatting Text 6-34
Fields of the Formatting Operator 6-34
Setting Field Width and Precision 6-40
Restrictions on Using Identifiers 6-43
Compare Text 0. .. 6-45
Search and Replace Text 6-51
Convert from Numeric Values to Character Array . . . 6-58
Function Summary 6-58
Convert Numbers to Character Codes 6-59
Represent Numbers as Text 6-59
Convert to Specific Radix 6-59
Convert from Character Arrays to Numeric Values . . 6-60
Function Summary 6-60
Convert from Character Code 6-61
Convert Text that Represents Numeric Values 6-61
Convert from Specific Radix 6-62
Function Summary 6-63

Dates and Time

Represent Dates and Times in MATLAB 7-2
Specify Time Zones 7-6
Convert Date and Time to Julian Date or POSIX Time . 7-8
Set Date and Time Display Format 7-12

Formats for Individual Date and Duration Arrays 7-12

datetime Display Format 7-12

duration Display Format 7-13
calendarDuration Display Format 7-14
Default datetime Format 7-15
Generate Sequence of Dates and Time 7-17
Sequence of Datetime or Duration Values Between
Endpoints with Step Size 7-17
Add Duration or Calendar Duration to Create Sequence of
Dates 7-19
Specify Length and Endpoints of Date or Duration
Sequence 7-20
Sequence of Datetime Values Using Calendar Rules . . 7-21
Share Code and Data Across Locales 7-24
Write Locale-Independent Date and Time Code 7-24
Write Dates in Other Languages 7-25
Read Dates in Other Languages 7-26
Extract or Assign Date and Time Components of
Datetime Array 7-27
Combine Date and Time from Separate Variables 7-31
Date and Time Arithmetic 7-33
Compare Datesand Time 7-40
Plot Dates and Durations 7-44
Line Plot with Dates 7-44
Line Plot with Durations 7-46
Scatter Plot with Dates and Durations 7-48
Plots that Support Dates and Durations 7-49
Core Functions Supporting Date and Time Arrays . .. 7-51

Convert Between Datetime Arrays, Numbers, and

Text ... e 7-52
OVEIVIEW . . vt e e 7-52
Convert Between Datetime and Character Vectors . . . 7-53
Convert Between Datetime and String Arrays 7-54
Convert Between Datetime and Date Vectors 7-55
Convert Serial Date Numbers to Datetime 7-56

xi

xii

Contents

Convert Datetime Arrays to Numeric Values 7-56
Carryover in Date Vectors and Strings 7-58

Converting Date Vector Returns Unexpected Output . 7-59

Categorical Arrays

8

Create Categorical Arrays 8-2
Convert Text in Table Variables to Categorical 8-7
Plot Categorical Data 8-12
Compare Categorical Array Elements 8-20
Combine Categorical Arrays 8-23
Combine Categorical Arrays Using Multiplication . .. 8-27
Access Data Using Categorical Arrays 8-30
Select Data By Category 8-30
Common Ways to Access Data Using Categorical
ATTays ..o 8-30
Work with Protected Categorical Arrays 8-38
Advantages of Using Categorical Arrays 8-43
Natural Representation of Categorical Data 8-43
Mathematical Ordering for Character Vectors 8-43
Reduce Memory Requirements 8-43
Ordinal Categorical Arrays 8-46
Order of Categorieso iiinuun... 8-46
How to Create Ordinal Categorical Arrays 8-46
Working with Ordinal Categorical Arrays 8-48
Core Functions Supporting Categorical Arrays 8-50

Tables

9

Create and Work with Tables 9-2
Add and Delete Table Rows 9-14
Add and Delete Table Variables 9-18
Clean Messy and Missing Data in Tables 9-22

Modify Units, Descriptions and Table Variable Names 9-29

10|

Access Dataina Table 9-33
Ways to Index intoa Table 9-33
Create Table from Subset of Larger Table 9-35
Create Array from the Contents of Table 9-38

Calculations on Tables 9-41

Split Data into Groups and Calculate Statistics 9-45

Split Table Data Variables and Apply Functions 9-49

Advantages of Using Tables 9-54

Grouping Variables To Split Data 9-61
Grouping Variables 9-61
Group Definition 9-61
The Split-Apply-Combine Workflow 9-62
Missing Group Values 9-63

Changes to DimensionNames Property in R2016b 9-65

Timetables

Create Timetables 10-2

xiii

xiv

Contents

Resample and Aggregate Data in Timetable 10-6
Combine Timetables and Synchronize Their Data . . 10-10

Select Timetable Data by Row Time and Variable
Type ... e 10-17

Clean Timetable with Missing, Duplicate, or Nonuniform
Times 10-24

Using Row Labels in Table and Timetable

11

Operations 10-34
Structures

Create Structure Arrayc.uvi.... 11-2
Access Data in a Structure Array 11-6
Concatenate Structures 11-10
Generate Field Names from Variables 11-13
Access Data in Nested Structures 11-14
Access Elements of a Nonscalar Struct Array 11-16
Ways to Organize Data in Structure Arrays 11-18
Plane Organization 11-18
Element-by-Element Organization 11-20
Memory Requirements for a Structure Array 11-22

Cell Arrays

12

What Is a Cell Array? 12-2
Create Cell Array 12-3
Access Datain Cell Array 12-5
Add Cellsto Cell Axray 12-8
Delete Data from Cell Array 12-10
Combine Cell Arrays 12-11
Pass Contents of Cell Arrays to Functions 12-12
Preallocate Memory for Cell Array 12-17
Cell vs. Struct Arrays0unionn.. 12-18
Multilevel Indexing to Access Parts of Cells 12-24

Function Handles

13|

Create Function Handle 13-2
What Is a Function Handle? 13-2
Creating Function Handles 13-2
Anonymous Functions 13-4
Arrays of Function Handles 13-4
Saving and Loading Function Handles 13-5

Pass Function to Another Function 13-6

Call Local Functions Using Function Handles 13-8

Compare Function Handles 13-10

Xv

xvi

Map Containers

14

Overview of Map Data Structure 14-2
Description of Map Class 14-4
Propertiesof Map Class 14-4
Methods of Map Class 14-5
Create Map Object 14-6
Construct Empty Map Object 14-6
Construct Initialized Map Object 14-6
Combine Map Objects 14-8
Examine Contentsof Map 14-9
Read and Write Using Key Index 14-11
Read From Map 14-11
Add Key/Value Pairs 14-12
Build Map with Concatenation 14-13
Modify Keys and ValuesinMap 14-16
Remove Keys and Values from Map 14-16
Modify Values 14-16
Modify Keyso 14-17
Modify Copy of Map 14-17
Map to Different Value Types 14-19
Map to Structure Array 14-19
MaptoCell Array 14-20

Combining Unlike Classes

15

Valid Combinations of Unlike Classes 15-2
Combining Unlike Integer Types 15-3
OVEIVIEW . . ittt e e et e e 15-3
Example of Combining Unlike Integer Sizes 15-3

Contents

16|

Example of Combining Signed with Unsigned 15-4
Combining Integer and Noninteger Data 15-5
Combining Cell Arrays with Non-Cell Arrays 15-6
Empty Matrices 15-7
Concatenation Examples 15-8

Combining Single and Double Types 15-8

Combining Integer and Double Types 15-8

Combining Character and Double Types 15-9

Combining Logical and Double Types 15-9

Using Objects
Object Behavior 16-2

Two Copy Behaviors 16-2

Handle Object Copy, 16-2

Value Object Copy Behavior 16-2

Handle Object Copy Behavior 16-3

Testing for Handle or Value Class 16-6

xvil

Defining Your Own Classes

17

Scripts and Functions

Scripts
Create Scripts e e 18-2
Add Comments to Programs 18-4
Run Code Sections 18-6
Divide Your File into Code Sections 18-6
Evaluate Code Sections 18-6
Navigate Among Code Sectionsina File 18-8
Example of Evaluating Code Sections 18-9
Change the Appearance of Code Sections 18-12

Use Code Sections with Control Statements and
Functions 18-12
Scripts vs. Functions 18-16
Add Functions to Scripts 18-18
Add Local Functions 18-18
Access Help 18-19
Run Code 18-19
Add and Run Sections in Live Scripts 18-20

Live Scripts

19

What Is a Live Script? 19-2
Live Script vs. Seript 19-4

xviii Contents

Requirements 19-5

Unsupported Features 19-6
Save Live Script as Script 19-6
Create Live Scripts 19-8
Open New Live Script 19-8
Run Code and Display Output 19-9
Format Live Scripts 19-12
Run Sections in Live Seripts 19-16
Divide Your File Into Sections 19-16
Evaluate Sections 19-16
View Code Status 19-17
Debugging 19-18
Modify Figures in Live Scripts 19-19
Explore Data 19-19
Update Code with Figure Changes 19-21
Add Formatting and Annotations 19-22
Add and Modify Multiple Subplots 19-25
Save and Print Figure 19-31
Insert Equations into Live Scripts 19-33
Insert Equation Interactively 19-33
Insert LaTeX Equation 19-36
Share Live Scripts 19-45
Live Script File Format (mlx) 19-47
Benefits of Live Script File Format 19-47
Source Control 19-47

Function Basics

20

Create Functionsin Files 20-2
Syntax for Function Definition 20-3
Contents of Functions and Files 20-4
End Statements 20-4

xix

XX

Contents

Add Help for Your Program
Run Functions in the Editor
Base and Function Workspaces

Share Data Between Workspaces
Introduction
Best Practice: Passing Arguments
Nested Functions
Persistent Variables
Global Variables
Evaluating in Another Workspace

Check Variable Scope in Editor
Use Automatic Function and Variable Highlighting . .
Example of Using Automatic Function and Variable

Highlighting

Types of Functions
Local and Nested Functionsina File
Private Functions in a Subfolder
Anonymous Functions Without a File

Anonymous Functions
What Are Anonymous Functions?
Variables in the Expression
Multiple Anonymous Functions
Functions with NoInputs
Functions with Multiple Inputs or Outputs
Arrays of Anonymous Functions

Local Functions

Nested Functions
What Are Nested Functions?
Requirements for Nested Functions
Sharing Variables Between Parent and Nested

Functions
Using Handles to Store Function Parameters
Visibility of Nested Functions

Variables in Nested and Anonymous Functions

20-10

20-11
20-11
20-11
20-12
20-12
20-13
20-14

20-16
20-16

20-17

20-20
20-20
20-21
20-21

20-24
20-24
20-25
20-26
20-27
20-27
20-28

20-30
20-32
20-32
20-32
20-33
20-34
20-37

20-39

Private Functions 20-41

Function Precedence Order 20-43

Function Arguments

21

Find Number of Function Arguments 21-2
Support Variable Number of Inputs 21-4
Support Variable Number of Outputs 21-6
Validate Number of Function Arguments 21-8
Argument Checking in Nested Functions 21-11
Ignore Function Inputs 21-13
Check Function Inputs with validateattributes 21-14
Parse Function Inputs 21-17
Input Parser Validation Functions 21-21

Debugging MATLAB Code

22

Debug a MATLAB Program 22-2
Set Breakpoint 22-2
Run File 22-3
Pause a Running File 22-4
Find and Fix a Problem 22-4
Step Through File 22-7
End Debugging Session 22-7

xx1

Set Breakpoints 22-9

Standard Breakpoints 22-10
Conditional Breakpoints 22-11
Error Breakpoints 22-12
Breakpoints in Anonymous Functions 22-15
Invalid Breakpoints 22-16
Disable Breakpoints 22-16
Clear Breakpoints 22-17
Examine Values While Debugging 22-18
Select Workspace 22-18
View Variable Value 22-18

Presenting MATLAB Code

23

Options for Presenting Your Code 23-2
Publishing MATLAB Code 23-4
Publishing Markup 23-7
Markup Overviewc. i non... 23-7
Sections and Section Titles 23-10
Text Formatting 23-11
Bulleted and Numbered Lists 23-12
Text and Code Blocks 23-13
External File Content 23-14
External Graphics 23-15
Image Snapshot 23-17
LaTeX Equations 23-18
Hyperlinks 23-20
HTML Markup 23-23
LaTeX Markupu ... 23-24
Output Preferences for Publishing 23-27
How to Edit Publishing Options 23-27
Specify Output File 23-28
Run Code During Publishing 23-29
Manipulate Graphics in Publishing Output 23-31
Save a Publish Setting 23-36

xxii Contents

Manage a Publish Configuration

Create a MATLAB Notebook with Microsoft Word . .
Getting Started with MATLAB Notebooks
Creating and Evaluating Cells in a MATLAB

Notebook
Formatting a MATLAB Notebook
Tips for Using MATLAB Notebooks
Configuring the MATLAB Notebook Software

23-37

23-41
23-41

23-43
23-48
23-50
23-51

Coding and Productivity Tips

24

Open and Save Files
Open Existing Files
Save Files

Check Code for Errors and Warnings
Automatically Check Code in the Editor — Code
Analyzer
Create a Code Analyzer Message Report
Adjust Code Analyzer Message Indicators and
MesSSages . ..o
Understand Code Containing Suppressed Messages .
Understand the Limitations of Code Analysis
Enable MATLAB Compiler Deployment Messages . . .

Improve Code Readability
Indenting Code
Right-Side Text Limit Indicator
Code Folding — Expand and Collapse Code

Constructs

Find and Replace Textin Files
Find Any Text in the Current File
Find and Replace Functions or Variables in the Current

File
Automatically Rename All Functions or Variables in a
File ...
Find and Replace Any Text

xx1iii

xxiv

Contents

Find Text in Multiple File Names or Files 24-32

Function Alternative for Finding Text 24-32
Perform an Incremental Search in the Editor 24-32
Go To Locationin File 24-33
Navigate to a Specific Location 24-33
Set Bookmarks 24-35
Navigate Backward and Forward in Files 24-36
Open a File or Variable from Within a File 24-37
Display Two Parts of a File Simultaneously 24-38
Add Remindersto Files 24-41
Working with TODO/FIXME Reports 24-41
MATLAB Code Analyzer Report 24-44
Running the Code Analyzer Report 24-44
Changing Code Based on Code Analyzer Messages . . 24-46
Other Ways to Access Code Analyzer Messages 24-47

Programming Utilities

25|

Identify Program Dependencies 25-2
Simple Display of Program File Dependencies 25-2
Detailed Display of Program File Dependencies 25-2
Dependencies Within a Folder 25-3

Protect Your Source Code 25-8
Building a Content Obscured Format with P-Code . . . 25-8
Building a Standalone Executable 25-9

Create Hyperlinks that Run Functions 25-11
Run a Single Function 25-12
Run Multiple Functions 25-12
Provide Command Options 25-13
Include Special Characters 25-13

Create and Share Toolboxes 25-14
Create Toolbox, 25-14

Share Toolbox 25-18

Manage Java Class Path for Toolboxes 25-20

Software Development

Error Handling

Exception Handling in a MATLAB Application 26-2
OVEIVIEW . . vttt i e it et e e e 26-2
Getting an Exception at the Command Line 26-2
Getting an Exception in Your Program Code 26-3
Generating a New Exception 26-4
Capture Information About Exceptions 26-5
OVEIVIEW . . ittt e e e e e 26-5

The MException Class 26-5
Properties of the MException Class 26-7
Methods of the MException Class 26-13
Throw an Exception 26-15
Respond to an Exception 26-17
OVEIVIEW . .\ vttt e et et e e 26-17

The try/catch Statement 26-17
Suggestions on How to Handle an Exception 26-19
Clean Up When Functions Complete 26-22
OVEIVIEW . . vttt it e e et e e e 26-22
Examples of Cleaning Up a Program Upon Exit 26-23
Retrieving Information About the Cleanup Routine . . 26-25
Using onCleanup Versus try/catch 26-26
onCleanup in Scripts 26-27
Issue Warnings and Errors 26-28
Issue Warnings 26-28
Throw Errors 26-28

XXV

xxvi

Contents

Add Run-Time Parameters to Your Warnings and

27|

Errors e 26-29

Add Identifiers to Warnings and Errors 26-30
Suppress Warnings 26-31
Turn Warnings On and Off 26-32
Restore Warnings 26-34
Disable and Restore a Particular Warning 26-34
Disable and Restore Multiple Warnings 26-35
Change How Warnings Display 26-37
Enable Verbose Warnings 26-37
Display a Stack Trace on a Specific Warning 26-38

Use try/catch to Handle Errors 26-39
Program Scheduling

Use a MATLAB Timer Object 27-2
OVEIVIEW . o\ ittt e e e et e 27-2
Example: Displaying a Message 27-3
Timer Callback Functions 27-5
Associating Commands with Timer Object Events 27-5
Creating Callback Functions 27-6
Specifying the Value of Callback Function Properties . 27-8
Handling Timer Queuing Conflicts 27-10
Drop Mode (Default) 27-10
Error Mode 27-12
Queue Mode 27-13

Performance

28

Measure Performance of Your Program . ..
Overview of Performance Timing Functions
Time Functions
Time Portions of Code
The cputime Function vs. tic/toc and timeit
Tips for Measuring Performance

Profile to Improve Performance

What Is Profiling?
Profiling Process and Guidelines

Using the Profiler
Profile Summary Report

Profile Detail Report

Use Profiler to Determine Code Coverage . .

Techniques to Improve Performance

Environment

Code Structure

Programming Practices for Performance . . .

Tips on Specific MATLAB Functions

Preallocation
Preallocating a Nondouble Matrix

Vectorization
Using Vectorization
Array Operations
Logical Array Operations
Matrix Operations
Ordering, Setting, and Counting Operations
Functions Commonly Used in Vectorization

28-2
28-2
28-2
28-2
28-3
28-3

28-5
28-5
28-5
28-6
28-8
28-10

28-13

28-15
28-15
28-15
28-15
28-16

28-18
28-18

28-20
28-20
28-21
28-22
28-23
28-25
28-26

xxvii

xxviii

Memory Usage

29|

Strategies for Efficient Use of Memory 29-2
Ways to Reduce the Amount of Memory Required 29-2
Using Appropriate Data Storage 29-4
How to Avoid Fragmenting Memory 29-6
Reclaiming Used Memory 29-8

Resolve “Out of Memory” Exrors 29-9
General Suggestions for Reclaiming Memory 29-9
Increase System Swap Space 29-10
Set the Process Limit on Linux Systems 29-10
Disable Java VM on Linux Systems 29-10
Free System Resources on Windows Systems 29-11

How MATLAB Allocates Memory 29-12
Memory Allocation for Arrays 29-12
Data Structures and Memory 29-16

Custom Help and Documentation

30

Create Help for Classes 30-2
Help Text from the doc Command 30-2
Custom Help Text 30-3

Check Which Programs Have Help 30-9

Create Help Summary Files — Contents.m 30-12
What Is a Contents.m File? 30-12
Create a Contents.m File 30-13
Check an Existing Contents.m File 30-13

Display Custom Documentation 30-15
OVEIVIEW . . ittt it e e et et e 30-15
Create HTML Help Files 30-16
Create info.xml File 30-17
Create helptoc.xml File 30-19

Contents

Build a Search Database 30-21

Address Validation Errors for info.xml Files 30-21
Display Custom Examples 30-24
How to Display Examples 30-24
Elements of the demos.xml File 30-25

Source Control Interface

31

About MathWorks Source Control Integration 31-3
Classic and Distributed Source Control 31-3
Select or Disable Source Control System 31-6
Select Source Control System 31-6
Disable Source Control 31-6
Create New Repository 31-7
Review Changes in Source Control 31-9
Mark Files for Addition to Source Control 31-10
Resolve Source Control Conflicts 31-11
Examining and Resolving Conflicts 31-11
Resolve Conflicts 31-11
Merge Text Files 31-12
Extract Conflict Markers 31-13
Commit Modified Files to Source Control 31-15
Revert Changes in Source Control 31-16
Revert Local Changes 31-16
Revert a File to a Specified Revision 31-16
Set Up SVN Source Control 31-17
SVN Source Control Options 31-17
Register Binary Files with SVN 31-18
Standard Repository Structure 31-21
Tag Versions of Files 31-21

xxix

XXX

Contents

Enforce Locking Files Before Editing

Share a Subversion Repository . .

Check Out from SVN Repository .

Retrieve Tagged Version of Repository

Update SVN File Status and Revision

Refresh Status of Files
Update Revisions of Files

Get SVN File Locks

Set Up Git Source Control
About Git Source Control

Install Command-Line Git Client
Register Binary Files with Git . .
Add Git Submodules

Clone from Git Repository

Troubleshooting

Update Git File Status and Revision

Refresh Status of Files
Update Revisions of Files

Branch and Merge with Git

Create Branch
Switch Branch
Merge Branches

Revert to Head
Delete Branches

Pull, Push and Fetch Files with Git

Pull and Push
Fetch and Merge

Move, Rename, or Delete Files Under Source Control

Customize External Source Control to Use MATLAB for

Diff and Merge

MSSCCI Source Control Interface

31-21
31-22

31-24
31-26

31-28
31-28
31-28

31-29

31-30
31-30
31-31
31-32
31-33

31-35
31-36

31-37
31-37
31-37

31-38
31-38
31-40
31-40
31-41
31-41

31-42
31-42
31-43

31-45

31-46

31-49

Set Up MSSCCI Source Control 31-50

Create Projects in Source Control System 31-50
Specify Source Control System with MATLAB

Software 31-52
Register Source Control Project with MATLAB

Software 31-53
Add Files to Source Control 31-55

Check Files In and Out from MSSCCI Source Control 31-57

Check Files Into Source Control 31-57
Check Files Out of Source Control 31-58
Undoing the Checkout 31-59
Additional MSSCCI Source Control Actions 31-60
Getting the Latest Version of Files for Viewing or
Compiling 31-60
Removing Files from the Source Control System 31-61
Showing File History 31-62
Comparing the Working Copy of a File to the Latest
Version in Source Control 31-63
Viewing Source Control Properties of a File 31-65
Starting the Source Control System 31-65
Access MSSCCI Source Control from Editors 31-67
Troubleshoot MSSCCI Source Control Problems 31-68
Source Control Error: Provider Not Present or Not
Installed Properly 31-68
Restriction Against @ Character 31-69
Add to Source Control Is the Only Action Available . . 31-69
More Solutions for Source Control Problems 31-70
Unit Testing
Write Script-Based Unit Tests 32-3
Write Script-Based Test Using Local Functions 32-10

xxx1

xxxii

Contents

Additional Topics for Script-Based Tests

Test Suite Creation
Test Selection

Programmatic Access of Test Diagnostics

Test Runner Customization

Write Function-Based Unit Tests . .

Create Test Function

Runthe Tests

Analyze the Results

Write Simple Test Case Using Functions

Write Test Using Setup and Teardown Functions . ..

Additional Topics for Function-Based Tests
Fixtures for Setup and Teardown Code

Test Logging and Verbosity
Test Suite Creation
Test Selection

Test Running

Programmatic Access of Test Diagnostics

Test Runner Customization

Author Class-Based Unit Tests in MATLAB

The Test Class Definition

The Unit Tests

Additional Features for Advanced Test Classes

Write Simple Test Case Using Classes

Write Setup and Teardown Code Using Classes

Test Fixtures

Test Case with Method-Level Setup Code
Test Case with Class-Level Setup Code

Types of Qualifications

Tag Unit Tests

Tag Tests
Select and Run Tests

Write Tests Using Shared Fixtures

32-14
32-14
32-15
32-16
32-16

32-18
32-18
32-21
32-21

32-22

32-27

32-34
32-34
32-35
32-36
32-36
32-37
32-37
32-38

32-39
32-39
32-39
32-41

32-43
32-48
32-48
32-48
32-49
32-52
32-55
32-55
32-56

32-60

Create Basic Custom Fixture

Create Advanced Custom Fixture

Create Basic Parameterized Test

Create Advanced Parameterized Test

Create Simple Test Suites

Run Tests for Various Workflows

Set Up Example Tests
Run All Tests in Class or Function
Run Single Test in Class or Function

Run Test Suites by Name
Run Test Suites from Test Array
Run Tests with Customized Test

Runner

Programmatically Access Test Diagnostics

Add Plugin to Test Runner

Write Plugins to Extend TestRunner

Custom Plugins Overview

Extending Test Level Plugin Methods
Extending Test Class Level Plugin Methods
Extending Test Suite Level Plugin Methods

Create Custom Plugin
Write Plugin to Save Diagnostic D
Plugin to Generate Custom Test O
Analyze Test Case Results

Analyze Failed Test Results

etails
utput Format . ..

Dynamically Filtered Tests
Test Methods
Method Setup and Teardown Code

Class Setup and Teardown Code

32-64
32-67
32-74
32-80
32-89
32-92
32-92
32-92
32-93
32-93
32-94
32-94
32-96
32-97
32-100
32-100
32-101
32-101
32-102
32-104
32-110
32-115
32-119
32-122
32-125
32-125

32-128
32-130

xxxiii

Create Custom Constraint 32-133

Create Custom Boolean Constraint 32-136
Create Custom Tolerance 32-139
Overview of Performance Testing Framework 32-145
Determine Bounds of Measured Code 32-145
Types of Time Experiments 32-146
Write Performance Tests with Measurement
Boundaries 32-147
Run Performance Tests 32-147
Understand Invalid Test Results 32-148
Test Performance Using Scripts or Functions 32-149
Test Performance Using Classes 32-154
Create Mock Object 32-162
Specify Mock Object Behavior 32-171
Define Mock Method Behavior 32-171
Define Mock Property Behavior 32-173
Define Repeating and Subsequent Behavior 32-174
Summary of Behaviors 32-176
Qualify Mock Object Interaction 32-178
Qualify Mock Method Interaction 32-179
Qualify Mock Property Interaction 32-180
Use Mock Object Constraints 32-180
Summary of Qualifications 32-183

System object Usage and Authoring

33|

What Are System Objects? 33-2
Running a System Object 33-3
System Object Methods 33-5

XXXV Contents

System Objects vs MATLAB Functions 33-8

System Objects vs. MATLAB Functions 33-8
Process Audio Data Using Only MATLAB Functions Code . . 33-8
Process Audio Data Using System Objects 33-9
System Design in MATLAB Using System Objects 33-11
System Design and Simulation in MATLAB 33-11
Predefined Components 33-12
Create Components for Your System 33-12
Component Properties 33-13
Configure Component Property Values 33-13
Create and Configure Components at the Same Time 33-14
Connecting System Objects 33-15
Connect Components in a System 33-15
Run Your System 33-16
Reconfiguring Objects 33-16
Change a Tunable Property in Your System 33-17
Define Basic System Objects 33-18
Change Number of Inputs or Outputs 33-21
Validate Property and Input Values 33-25
Initialize Properties and Setup One-Time Calculations . . 33-28
Set Property Values at Construction Time 33-31
Reset Algorithm and Release Resources 33-33
Reset Algorithm State 33-33
Release System Object Resources 33-34
Define Property Attributes 33-36
Hide Inactive Properties 33-40
Limit Property Values to Finite List 33-42
Process Tuned Properties 33-45
Define Composite System Objects 33-47
Define Finite Source Objects 33-50

XXXV

XxXxVvi

Contents

Save and Load System Object

Define System Object Information

Specify Locked Input Size

Use Update and Output for Nondirect Feedthrough

Methods Timing

Setup Method Call Sequence

Running the Object (Step Method) Call Sequence

Reset Method Call Sequence
Release Method Call Sequence

Best Practices for Defining System Objects .

System Object Input Arguments and ~ in Code Examples .

Insert System Object Code Using MATLAB Editor

Define System Objects with Code Insertion .
Create Fahrenheit Temperature String Set .
Create Custom Property for Freezing Point .

Define Input Size As Locked

Analyze System Object Code

View and Navigate System object Code

Example: Go to StepImpl Method Using Analyzer

Use Enumerations in System Objects

Use Global Variables in System Objects
System Object Global Variables in MATLAB
System Object Global Variables in Simulink

33-52

33-56

33-58

33-60

33-63
33-63
33-64
33-64
33-65

33-66
33-68

33-69
33-69
33-72
33-73
33-74

33-76
33-76
33-76

33-79
33-80

33-80
33-80

Language

Syntax Basics

* “Continue Long Statements on Multiple Lines” on page 1-2
+ “Call Functions” on page 1-3

* “Ignore Function Outputs” on page 1-4

+ “Variable Names” on page 1-5

+ “Case and Space Sensitivity” on page 1-7

* “Command vs. Function Syntax” on page 1-9

* “Common Errors When Calling Functions” on page 1-13

1 Syntax Basics

Continue Long Statements on Multiple Lines

This example shows how to continue a statement to the next line using ellipsis (. . .).

s=1-1/2 + 1/3 - 1/4 + 1/5 ...
- 1/6 + 1/7 - 1/8 + 1/9;

Build a long character vector by concatenating shorter vectors together:

mytext = ["Accelerating the pace of *
"engineering and science®];

The start and end quotation marks for a character vector must appear on the same line.
For example, this code returns an error, because each line contains only one quotation
mark:

mytext = "Accelerating the pace of ...
engineering and science”

An ellipsis outside a quoted text is equivalent to a space. For example,
X =

4.56];
1s the same as

x = [1.23 4.56];

Call Functions

Call Functions

These examples show how to call a MATLAB function. To run the examples, you must
first create numeric arrays A and B, such as:

A
B

[1 3 5];
[10 6 4];

Enclose inputs to functions in parentheses:

max(A)

Separate multiple inputs with commas:

max(A,B)

Store output from a function by assigning it to a variable:
maxA = max(A)

Enclose multiple outputs in square brackets:

[maxA, location] = max(A)

Call a function that does not require any inputs, and does not return any outputs, by
typing only the function name:

clc

Enclose text inputs in single quotation marks:

disp(Thello world®)

Related Examples

. “Ignore Function Outputs” on page 1-4

1 Syntax Basics

Ignore Function Outputs

This example shows how to request specific outputs from a function.

Request all three possible outputs from the Fileparts function.

helpFile = which("help™);
[helpPath,name,ext] = Ffileparts(helpFile);

The current workspace now contains three variables from Fi leparts: helpPath, name,
and ext. In this case, the variables are small. However, some functions return results
that use much more memory. If you do not need those variables, they waste space on
your system.

Request only the first output, ignoring the second and third.
helpPath = fileparts(helpFile);
For any function, you can request only the first N outputs (where N’ is less than or equal

to the number of possible outputs) and ignore any remaining outputs. If you request more
than one output, enclose the variable names in square brackets, [].

Ignore the first output using a tilde (~).
[~.,name,ext] = Fileparts(helpFile);

You can ignore any number of function outputs, in any position in the argument list.
Separate consecutive tildes with a comma, such as

[~,~.ext] = Fileparts(helpFile);

Variable Names

Variable Names

In this section...

“Valid Names” on page 1-5

“Conflicts with Function Names” on page 1-5

Valid Names

A valid variable name starts with a letter, followed by letters, digits, or underscores.
MATLAB is case sensitive, so A and a are not the same variable. The maximum length of
a variable name is the value that the namelengthmax command returns.

You cannot define variables with the same names as MATLAB keywords, such as i or
end. For a complete list, run the iskeyword command.

Examples of valid names: Invalid names:
X6 6X

lastvalue end
n_factorial n!

Conflicts with Function Names

Avoid creating variables with the same name as a function (such as i, j, mode, char,
size, and path). In general, variable names take precedence over function names. If you
create a variable that uses the name of a function, you sometimes get unexpected results.

Check whether a proposed name is already in use with the exist or which function.
exist returns O if there are no existing variables, functions, or other artifacts with the
proposed name. For example:

exist checkname

ans =
0

If you inadvertently create a variable with a name conflict, remove the variable from
memory with the clear function.

1 Syntax Basics

Another potential source of name conflicts occurs when you define a function that calls
load or eval (or similar functions) to add variables to the workspace. In some cases,
load or eval add variables that have the same names as functions. Unless these
variables are in the function workspace before the call to load or eval, the MATLAB
parser interprets the variable names as function names. For more information, see:

“Unexpected Results When Loading Variables Within a Function”

“Alternatives to the eval Function” on page 2-83

See Also

clear | exist | iskeyword | isvarname | namelengthmax | which

Case and Space Sensitivity

Case and Space Sensitivity

MATLAB code is sensitive to casing, and insensitive to blank spaces except when
defining arrays.

Uppercase and Lowercase

In MATLAB code, use an exact match with regard to case for variables, files, and
functions. For example, if you have a variable, a, you cannot refer to that variable as
A. It is a best practice to use lowercase only when naming functions. This is especially

useful when you use both Microsoft® Windows"™ and UNIX®" platforms because their file
systems behave differently with regard to case.

When you use the help function, the help displays some function names in all uppercase,
for example, PLOT, solely to distinguish the function name from the rest of the text. Some

functions for interfacing to Oracle® Java® software do use mixed case and the command-
line help and the documentation accurately reflect that.

Spaces

Blank spaces around operators such as -, -, and (), are optional, but they can improve
readability. For example, MATLAB interprets the following statements the same way.

y =sin (3 * pi) / 2
y=sin(3*pi)/2
However, blank spaces act as delimiters in horizontal concatenation. When defining row

vectors, you can use spaces and commas interchangeably to separate elements:

A

[1, 0 2, 3 3]

A

1 0 2 3 3
Because of this flexibility, check to ensure that MATLAB stores the correct values. For
example, the statement [1 sin (pi) 3] produces a much different result than [1
sin(pi) 3] does.

[1 sin (pi) 3]

Error using sin

1. UNIX is a registered trademark of The Open Group in the United States and other countries.

1 Syntax Basics

Not enough input arguments.

[1 sin(pi) 3]

ans =

1.0000 0.0000 3.0000

Command vs. Function Syntax

Command vs. Function Syntax

In this section...

“Command and Function Syntaxes” on page 1-9
“Avoid Common Syntax Mistakes” on page 1-10
“How MATLAB Recognizes Command Syntax” on page 1-11

Command and Function Syntaxes

In MATLAB, these statements are equivalent:

load durer._mat % Command syntax
load("durer._mat”®) % Function syntax

This equivalence is sometimes referred to as command-function duality.

All functions support this standard function syntax:
[outputl, ..., outputM] = FfunctionName(inputl, ..., inputN)

If you do not require any outputs from the function, and all of the inputs are character
vectors (that is, text enclosed in single quotation marks), you can use this simpler
command syntax:

functionName inputl ... inputN

With command syntax, you separate inputs with spaces rather than commas, and do not
enclose input arguments in parentheses. Single quotation marks are optional, unless the
input contains spaces. For example:

disp “hello world~

When a function input is a variable, you must use function syntax to pass the value

to the function. Command syntax always passes inputs as literal text and cannot pass
variable values. For example, create a variable and call the disp function with function
syntax to pass the value of the variable:

A = 123;
disp(A)

This code returns the expected result,

1 Syntax Basics

123

You cannot use command syntax to pass the value of A, because this call
disp A

1s equivalent to

disp("A")

and returns

A

Avoid Common Syntax Mistakes

Suppose that your workspace contains these variables:

filename = "accounts.txt";
A int8(1:8);
B A;

The following table illustrates common misapplications of command syntax.

This Command... Is Equivalent fo... Correct Syntax for Passing Value
open Filename open("filename™) open(filename)
isequal A B isequal ("A","B") isequal (A,B)
strcmp class(A) int8 stremp(“class(A) ", "int87) strcmp(class(A), "int8")
cd matlabroot cd("matlabroot®) cd(matlabroot)
isnumeric 500 isnumeric("500%) isnumeric(500)
round 3.499 round("3.499"), which is round(3.499)
equivalent to round([51 46
52 57 571)

Passing Variable Names

Some functions expect character vectors for variable names, such as save, load, clear,
and whos. For example,

whos -file durer.mat X

1-10

Command vs. Function Syntax

requests information about variable X in the example file durer.mat. This command is
equivalent to

whos("-file", "durer.mat”, "X")

How MATLAB Recognizes Command Syntax

Consider the potentially ambiguous statement

Is ./d

This could be a call to the Is function with the folder ./d as its argument. It also could
request element-wise division on the array 1S, using the variable d as the divisor.

If you issue such a statement at the command line, MATLAB can access the current
workspace and path to determine whether Is and d are functions or variables. However,
some components, such as the Code Analyzer and the Editor/Debugger, operate without
reference to the path or workspace. In those cases, MATLAB uses syntactic rules to
determine whether an expression is a function call using command syntax.

In general, when MATLAB recognizes an identifier (which might name a function or a
variable), it analyzes the characters that follow the identifier to determine the type of
expression, as follows:

* An equal sign (=) implies assignment. For example:
Is =d

* An open parenthesis after an identifier implies a function call. For example:
Is("./d")

* Space after an identifier, but not after a potential operator, implies a function call
using command syntax. For example:

Is ./d

+ Spaces on both sides of a potential operator, or no spaces on either side of the
operator, imply an operation on variables. For example, these statements are
equivalent:

Is ./ d

Is./d

1-11

1 Syntax Basics

Therefore, the potentially ambiguous statement Is ./d is a call to the Is function using
command syntax.

The best practice is to avoid defining variable names that conflict with common
functions, to prevent any ambiguity.

1-12

Common Errors When Calling Functions

Common Errors When Calling Functions

In this section...

“Conflicting Function and Variable Names” on page 1-13

“Undefined Functions or Variables” on page 1-13

Conflicting Function and Variable Names

MATLAB throws an error if a variable and function have been given the same name and
there is insufficient information available for MATLAB to resolve the conflict. You may
see an error message something like the following:

Error: <functionName> was previously used as a variable,
conflicting with its use here as the name of a function
or command.

where <functionName> is the name of the function.

Certain uses of the eval and load functions can also result in a similar conflict between
variable and function names. For more information, see:

+ “Conflicts with Function Names” on page 1-5

* “Unexpected Results When Loading Variables Within a Function”

+ “Alternatives to the eval Function” on page 2-83

Undefined Functions or Variables

You may encounter the following error message, or something similar, while working
with functions or variables in MATLAB:

Undefined function or variable "x".

These errors usually indicate that MATLAB cannot find a particular variable or

MATLAB program file in the current directory or on the search path. The root cause is
likely to be one of the following:

* The name of the function has been misspelled.

* The function name and name of the file containing the function are not the same.
* The toolbox to which the function belongs is not installed.

* The search path to the function has been changed.

1-13

1 Syntax Basics

1-14

* The function is part of a toolbox that you do not have a license for.
Follow the steps described in this section to resolve this situation.
Verify the Spelling of the Function Name

One of the most common errors is misspelling the function name. Especially with longer
function names or names containing similar characters (e.g., letter I and numeral one), it
1s easy to make an error that is not easily detected.

If you misspell a MATLAB function, a suggested function name appears in the Command
Window. For example, this command fails because it includes an uppercase letter in the
function name:

accumArray

Undefined function or variable “accumArray”.

Did you mean:
>> accumarray

Press Enter to execute the suggested command or Esc to dismiss it.
Make Sure the Function Name Matches the File Name

You establish the name for a function when you write its function definition line. This
name should always match the name of the file you save it to. For example, if you create
a function named curveplot,

function curveplot(xval, yval)
- program code -

then you should name the file containing that function curveplot.m. If you create a
pcode file for the function, then name that file curveplot.p. In the case of conflicting
function and file names, the file name overrides the name given to the function. In this
example, if you save the curveplot function to a file named curveplotfunction.m,
then attempts to invoke the function using the function name will fail:

curveplot
Undefined function or variable "curveplot®.

If you encounter this problem, change either the function name or file name so that
they are the same. If you have difficulty locating the file that uses this function, use the
MATLAB Find Files utility as follows:

Common Errors When Calling Functions

2 Under Find files named: enter *_.m

w

4 Click the Find button

On the Home tab, in the File section, click EE Find Files.

Under Find files containing text: enter the function name.

Find files narmed:

*m

Find files containing text:
curveplot

Include anly file type(s):
All files (%)

Look in:

Current folder

[] Include subfolders

| Find || ClearTex

Meore cptions

Skip files over (500
Search type:
 Contains text

[] Match case

Skip file type(s):

MEB

Edit

Make Sure the Toolbox Is Installed

File name

curveplotfunction.m

Line Text
1 curveplot

7 |

(L

Folders searched:

curveplot

["] Show full path names

1 match(es) of "curveplot” in files named "*.m" in 1 files.

C:\Program Files\MATLAB -5

| CloseAliTabs || Close || Help |

If you are unable to use a built-in function from MATLAB or its toolboxes, make sure
that the function is installed.

If you do not know which toolbox supports the function you need, search for the function
documentation at http://www.mathworks.com/help. The toolbox name appears at
the top of the function reference page.

Once you know which toolbox the function belongs to, use the ver function to see which
toolboxes are installed on the system from which you run MATLAB. The ver function

displays a list of all currently installed MathWorks® products. If you can locate the

1-15

http://www.mathworks.com/help

1 Syntax Basics

1-16

toolbox you need in the output displayed by ver, then the toolbox is installed. For help
with installing MathWorks products, see the Installation Guide documentation.

If you do not see the toolbox and you believe that it is installed, then perhaps the
MATLAB path has been set incorrectly. Go on to the next section.

Verify the Path Used to Access the Function

This step resets the path to the default. Because MATLAB stores the toolbox information
in a cache file, you will need to first update this cache and then reset the path. To do this,

1
On the Home tab, in the Environment section, click @ Preferences.

The Preference dialog box appears.

2 Under the MATLAB > General node, click the Update Toolbox Path Cache
button.

On the Home tab, in the Environment section, click & Set Path....

The Set Path dialog box opens.
4 Click Default.

A small dialog box opens warning that you will lose your current path settings if you
proceed. Click Yes if you decide to proceed.

(If you have added any custom paths to MATLAB, you will need to restore those later)

Run ver again to see if the toolbox is installed. If not, you may need to reinstall this
toolbox to use this function. See the Related Solution 1-1CBD3, "How do I install
additional toolboxes into my existing MATLAB" for more information about installing a
toolbox.

Once ver shows your toolbox, run the following command to see if you can find the
function:

which -all <functionname>

replacing <functionname> with the name of the function. You should be presented with
the path(s) of the function file. If you get a message indicating that the function name
was not found, you may need to reinstall that toolbox to make the function active.

http://www.mathworks.com/support/solutions/en/data/1-1CBD3/?solution=1-1CBD3
http://www.mathworks.com/support/solutions/en/data/1-1CBD3/?solution=1-1CBD3

Common Errors When Calling Functions

Verify that Your License Covers The Toolbox

If you receive the error message “Has no license available”, there is a licensing
related issue preventing you from using the function. To find the error that is occurring,
you can use the following command:

license checkout <toolbox_license_key name>

replacing <toolbox_license_key name> with the proper key name for the toolbox
that contains your function. To find the license key name, look at the INCREMENT lines in
your license file. For information on how to find your license file see the related solution:
1-63ZIR6, "Where are the license files for MATLAB located?”

The license key names of all the toolboxes are located after each INCREMENT tag in the
license.dat file. For example:

INCREMENT MATLAB MLM 17 00-jan-0000 O k
B454554BADECED4258 \HOSTID=123456 SN=123456

If your license.dat file has no INCREMENT lines, refer to your license administrator for
them. For example, to test the licensing for Symbolic Math Toolbox™, you would run the
following command.:

license checkout Symbolic_Toolbox

A correct testing gives the result "ANS=1". An incorrect testing results in an error from
the license manager. You can either troubleshoot the error by looking up the license
manager error here:

http://www._mathworks.com/support/install_html

or you can contact the Installation Support Team with the error here:

http://www._mathworks.com/support/contact_us/index._html

When contacting support, provide your license number, your MATLAB version, the
function you are using, and the license manager error (if applicable).

1-17

http://www.mathworks.co.kr/support/solutions/en/data/1-63ZIR6/index.html?solution=1-63ZIR6

Program Components

+ “MATLAB Operators and Special Characters” on page 2-2

* “Array vs. Matrix Operations” on page 2-14

+ “Compatible Array Sizes for Basic Operations” on page 2-20
* “Array Comparison with Relational Operators” on page 2-26
* “Operator Precedence” on page 2-30

+ “Average Similar Data Points Using a Tolerance” on page 2-32
* “Group Scattered Data Using a Tolerance” on page 2-35

+ “Conditional Statements” on page 2-38

* “Loop Control Statements” on page 2-40

* “Regular Expressions” on page 2-42

+ “Lookahead Assertions in Regular Expressions” on page 2-57
* “Tokens in Regular Expressions” on page 2-60

* “Dynamic Regular Expressions” on page 2-66

+ “Comma-Separated Lists” on page 2-74

+ “Alternatives to the eval Function” on page 2-83

2 Program Components

MATLAB Operators and Special Characters

This page contains a comprehensive listing of all MATLAB operators, symbols, and

special characters.

Arithmetic Operators

Symbol Role More Information

it Addition plus

i Unary plus uplus

- Subtraction minus

- Unary minus uminus

.* Element-wise multiplication times

* Matrix multiplication mtimes
-/ Element-wise right division rdivide

/ Matrix right division mrdivide
\ Element-wise left division Idivide

Matrix left divison
\ mldivide
(also known as backslash)

N Element-wise power power

N Matrix power mpower

- Transpose transpose
" Complex conjugate transpose ctranspose

Relational Operators

Symbol Role More Information
== Equal to eq
~= Not equal to ne
> Greater than gt
>= Greater than or equal to ge

2-2

MATLAB Operators and Special Characters

Symbol Role More Information
< Less than it
<= Less than or equal to le

Logical Operators

short-circuiting)

Symbol Role More Information
& Logical AND and
| Logical OR or
88 Logical AND (with

Logical OR (with
short-circuiting)

Logical Operators:
Short-Circuit && ||

Logical NOT

not

Special Characters

Symbol Symbol Name Role Description
The @ symbol forms a handle to
Function handle construction named function that follows the
@ At symbol and reference anonymous function that follow:
“Create Function Handle” on
The period character separates 1
fractional parts of a number, su
- Decimal point MATLAB operators that contair
El b & work element-wise. The period c
) ement-wise operations enables you to access the fields i
- Period or dot |+ Structure field access

* Object property or method
specifier

well as the properties and meth

“Array vs. Matrix Operations
+ “Structures”

+ “Access Property Values”

2-3

2 Program Components

2-4

Symbol

Symbol Name

Role

Description

Dot dot dot
or ellipsis

Line continuation

Three or more periods at the en
the current command on the nes
more periods occur before the er
MATLAB ignores the rest of the
to the next line. This effectively
out of anything on the current Ii
three periods.

Note: MATLAB interprets the e
character. Therefore, multi-line
valid as a single line with the el
space character.

“Continue Long Statements (
on page 1-2

MATLAB Operators and Special Characters

Symbol Symbol Name Role Description
Use commas to separate row ele
array, array subscripts, functior

Comma Separator arguments, and commands ente

line.

* horzcat

2 Program Components

2-6

Symbol Symbol Name Role Description
Use the colon operator to create
Vector creation vectors, index into arrays, and d

. for loop.

: Colon * Indexing a e

For-loop iteration

colon

+ “Creating and Concatenating

MATLAB Operators and Special Characters

Symbol Symbol Name Role Description
Use semicolons to separate rows
- Signify end of row creation command, or to suppre:
; Semicolon . |of a line of code.
+ Suppress output of code line
* vertcat
Use parentheses to specify prece
* Operator precedence enclose function input argumen
O Parentheses Function argument array.
enclosure
. + “Operator Precedence” on pa
+ Indexing

“Matrix Indexing”

2 Program Components

Conversion specifier

Symbol Symbol Name Role Description
) Square brackets enable array co
* Array construction concatenation, creation of empt
+ Array concatenation of array elements, and capturin;
[1 Square brackets Empty matrix' and array a function.
element deletion “Creating and Concatenating
o Mu}tiple output argument |. p5rzcat
assignment
vertcat
Use curly braces to construct a c
Cell array assignment access the contents of a particul
{3} Curly brackets and contents array.
+ “Cell Arrays”
The percent sign is most commo
nonexecutable text within the b
This text is normally used to inc
your code.
% Percent * Comment Some functions also interpret th

conversion specifier.

Two percent signs, %%, serve as
described in “Run Code Sections

+ “Add Comments to Programs

MATLAB Operators and Special Characters

Symbol

Symbol Name

Role

Description

%{ %}

Percent
curly bracket

Block comments

The %{ and %} symbols enclose -
that extend beyond one line.

Note: With the exception of whi
the %{ and %} operators must a;
lines that immediately precede ¢
of help text. Do not include any
lines.

“Add Comments to Programs

Exclamation
point

Operating system command

The exclamation point precedes
commands that you want to exe
MATLAB.

“Shell Escape Functions”

Question mark

Metaclass for MATLAB class

The question mark retrieves the
for a particular class name. The
only with a class name, not an o

+ metaclass

Single quotes

Character array constructor

Use single quotes to create char
have class char.

“Represent Text with Charac
Arrays” on page 6-2

Double quotes

String constructor

Use double quotes to create stri
class string.

“Represent Text with Charac
Arrays” on page 6-2

2 Program Components

2-10

Symbol Symbol Name Role Description

Use the space character to sepai
in an array constructor, or the v
function. In these contexts, the :
comma are equivalent.

N/A Space character Separator

Use the tilde symbol to represer
+ Logical NOT suppress output of specific outp
= Tilde
Argument placeholder * not

“Ignore Function Inputs” on |

Use the equal sign to assign val
The syntax B = A stores the ele
variable B.

= Equal sign Assignment

Note: The = character is for assi
the == character is for comparin

two arrays. See eq for more info

String and Character Formatting

Some special characters can only be used in the text of a character vector or string. You
can use these special characters to insert new lines or carriage returns, specify folder
paths, and more.

MATLAB Operators and Special Characters

Use the special characters in this table to specify a folder path using a character vector or

string.
Symbol S'\);:' mb:l Role Description Examples
In addition to their
use as mathematical O e el e,
operators, the slash and th
backslash characters %rou can use erzher
ackslash or slash:

separate the elements

/ Slash and File or of a path or folder. On dir([matlabroot *\tool

Backslash folder pgth Microsoft Windows dir([matlabroot "/tool

\ separation |based systems, both
slash and backslash On a UNIX system, use
have the same effect. On |only the forward slash:
g‘he Uz Cronrg WIS dir([matlabroot *"/tool

ased systems, you must
use slash only.
Two dots in succession
refers to the parent of |To go up two levels in
the current folder. Use |the folder tree and down
Dot dot | Parent folder this character to specify |into the test folder,
folder paths relative to |use:
the current folder.
cd ..\..\test
+ cd
In addition to being
the symbol for matrix
multiplication, the
asterisk * is used as a
wildcard character. dir("january_*.mat")
. Wildeard _ locates all files w1th
& Asterisk character Wildcards are generally [names that start with

used in file operations
that act on multiple files
or folders. MATLAB
matches all characters
in the name exactly
except for the wildcard

January_ and have a
.mat file extension.

2-11

box\matlak
box/matlak

box/matlak

2 Program Components

2-12

+ “Packages Create
Namespaces”

Symbol S'z:' r::I Role Description Examples
character *, which can
match any one or more
characters.
An @ sign indicates the
Class folder |Rame of a class folder. Refer to a class folder:
@ At symbol |. dicat
ndicator + “Class and Path \@myClass\get.m
Folders”
A + sign indicates the Pac.kagej folders always
Pack name of a package begin with the +
ackage . der character:
+ Plus directory :
indicator +mypack

+mypack/pkfcn.m % a g
+mypack/@myClass % clg

ackage fur
ss folder

There are certain special characters that you cannot enter as ordinary text. Instead, you
must use unique character sequences to represent them. Use the symbols in this table
to format strings and character vectors on their own or in conjunction with formatting
functions like compose, sprintf, and error. For more information, see “Formatting
Text” on page 6-34.

Symbol Effect on Text

" Single quotation mark
%% Single percent sign
\\ Single backslash
\a Alarm

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

MATLAB Operators and Special Characters

Symbol Effect on Text

\XxN Hexadecimal number, N
\N Octal number, N

More About

. “Array vs. Matrix Operations” on page 2-14
. “Array Comparison with Relational Operators” on page 2-26
. “Compatible Array Sizes for Basic Operations” on page 2-20
. “Operator Precedence” on page 2-30

. “Find Array Elements That Meet a Condition” on page 5-2

. “Greek Letters and Special Characters in Graph Text”

2-13

2 Program Components

Array vs. Matrix Operations

2-14

In this section...

“Introduction” on page 2-14
“Array Operations” on page 2-14
“Matrix Operations” on page 2-17

Introduction

MATLAB has two different types of arithmetic operations: array operations and matrix
operations. You can use these arithmetic operations to perform numeric computations,
for example, adding two numbers, raising the elements of an array to a given power, or
multiplying two matrices.

Matrix operations follow the rules of linear algebra. By contrast, array operations
execute element by element operations and support multidimensional arrays. The period
character (.) distinguishes the array operations from the matrix operations. However,
since the matrix and array operations are the same for addition and subtraction, the
character pairs .+ and .- are unnecessary.

Array Operations

Array operations execute element by element operations on corresponding elements

of vectors, matrices, and multidimensional arrays. If the operands have the same size,
then each element in the first operand gets matched up with the element in the same
location in the second operand. If the operands have compatible sizes, then each input is
implicitly expanded as needed to match the size of the other. For more information, see
“Compatible Array Sizes for Basic Operations” on page 2-20.

As a simple example, you can add two vectors with the same size.

A=T[111]
A =

1 1 1
B=1[12 3]

Array vs. Matrix Operations

B =
1 2 3
A+B
ans =
2 3 4

If one operand is a scalar and the other is not, then MATLAB implicitly expands the
scalar to be the same size as the other operand. For example, you can compute the
element-wise product of a scalar and a matrix.

A=1[L23;123]
A =
1 2 3
1 2 3
3.*A
ans =
3 6 9
3 6 9

Implicit expansion also works if you subtract a 1-by-3 vector from a 3-by-3 matrix
because the two sizes are compatible. When you perform the subtraction, the vector is
implicitly expanded to become a 3-by-3 matrix.

A=[111; 22 2; 33 3]
A =

1 1 1

2 2 2

3 3 3
m=[2 4 6]
m =

2 4 6

2-15

2 Program Components

A-m
ans =
-1
0
1

-3
-2
-1

-5
-4
-3

A row vector and a column vector have compatible sizes. If you add a 1-by-3 vector to a
2-by-1 vector, then each vector implicitly expands into a 2-by-3 matrix before MATLAB
executes the element-wise addition.

x =112 3]
X =
1 2 3
y = [10; 15]
y =
10
15
X +y
ans =

11 12 13
16 17 18

If the sizes of the two operands are incompatible, then you get an error.

A=[816;357; 409 2]
A =
8 1 6
3 5 7
4 9 2
m = [2 4]
m:

2-16

Array vs. Matrix Operations

2 4
A-m
Matrix dimensions must agree.

The following table provides a summary of arithmetic array operators in MATLAB. For
function-specific information, click the link to the function reference page in the last
column.

Operator Purpose Description Reference
Page

+ Addition A+B adds A and B. plus

+ Unary plus +A returns A. uplus

- Subtraction |A-B subtracts B from A minus

- Unary minus |-A negates the elements of A. uminus

J* Element-wise |A.*B is the element-by-element product of |times
multiplication |A and B.

N Element-wise |A.”B is the matrix with elements A(i, j) |power
power to the B(i,J) power.

-/ Right array |A./B is the matrix with elements rdivide
division A(1,5)/B(1,]).

\ Left array A_\B is the matrix with elements Idivide
division B(i,j)/A(1,]).

- Array A. " is the array transpose of A. For transpose
transpose complex matrices, this does not involve
conjugation.

Matrix Operations

Matrix operations follow the rules of linear algebra and are not compatible with
multidimensional arrays. The required size and shape of the inputs in relation to one
another depends on the operation. For nonscalar inputs, the matrix operators generally
calculate different answers than their array operator counterparts.

For example, if you use the matrix right division operator, 7/, to divide two matrices,
the matrices must have the same number of columns. But if you use the matrix

2-17

2 Program Components
d P

multiplication operator, *, to multiply two matrices, then the matrices must have a
common inner dimension. That is, the number of columns in the first input must be equal
to the number of rows in the second input. The matrix multiplication operator calculates
the product of two matrices with the formula,

CG,j)="Y AG,R)Bk,).
k=1

To see this, you can calculate the product of two matrices.

A= [1 3;2 4]
A =
1 3
2 4
B = [3 0:1 5]
B =
3 0
1 5
A*B
ans =
6 15
10 20

The previous matrix product is not equal to the following element-wise product.
A.*B

ans =

2 20
The following table provides a summary of matrix arithmetic operators in MATLAB.

For function-specific information, click the link to the function reference page in the last
column.

2-18

Array vs. Matrix Operations

Operator Purpose Description Reference
Page
* Matrix C =A*B is the linear algebraic product mtimes
multiplication |of the matrices A and B. The number of
columns of A must equal the number of
rows of B.
\ Matrix left X = A\B is the solution to the equation Ax \mldivide
division = B. Matrices A and B must have the same
number of rows.
/ Matrix right |x = B/Ais the solution to the equation mrdivide
division xA = B. Matrices A and B must have the
same number of columns. In terms of the
left division operator, B/A = (A"\B")".
2 Matrix power |A”B is A to the power B, if B is a scalar. For |mpower
other values of B, the calculation involves
eigenvalues and eigenvectors.
" Complex A" is the linear algebraic transpose of A. |ctranspose
conjugate For complex matrices, this is the complex
transpose conjugate transpose.
More About

. “Compatible Array Sizes for Basic Operations” on page 2-20
. “MATLAB Operators and Special Characters” on page 2-2

. “Operator Precedence” on page 2-30

2-19

2 Program Components

Compatible Array Sizes for Basic Operations
Most binary (two-input) operators and functions in MATLAB support numeric arrays
that have compatible sizes. Two inputs have compatible sizes if, for every dimension,
the dimension sizes of the inputs are either the same or one of them is 1. In the simplest
cases, two array sizes are compatible if they are exactly the same or if one is a scalar.

MATLAB implicitly expands arrays with compatible sizes to be the same size during the
execution of the element-wise operation or function.

Inputs with Compatible Sizes
2-D Inputs
These are some combinations of scalars, vectors, and matrices that have compatible sizes:

* Two inputs which are exactly the same size.

Al 2-by-2 B: 2-by-2 Result: 2-by-2

* One input is a scalar.

Al 2-by-2 B: 1-by-1 Result: 2-by-2

* One input is a matrix, and the other is a column vector with the same number of
rOws.

2-20

Compatible Array Sizes for Basic Operations

A 4-by-2 B: 4-by-1 Result: 4-by-2

* One input is a column vector, and the other is a row vector.

B: 2-by-1 A 1-by-3 Result: 2-by-3

Multidimensional Arrays

Every array in MATLAB has trailing dimensions of size 1. For multidimensional arrays,
this means that a 3-by-4 matrix is the same as a matrix of size 3-by-4-by-1-by-1-by-1.
Examples of multidimensional arrays with compatible sizes are:

* One input is a matrix, and the other is a 3-D array with the same number of rows and
columns.

2-21

2 Program Components

A: 3-by-4 B: 3-by-4-by-2 Result: 3-by-4-E

* One input is a matrix, and the other is a 3-D array. The dimensions are all either the
same or one of them is 1.

2-22

Compatible Array Sizes for Basic Operations

A 4-by-3 B: 1-by-3-by-3 Result: 4-by-

Empty Arrays

The rules are the same for empty arrays or arrays that have a dimension size of zero. The
size of the dimension that is not equal to 1 determines the size of the output. This means
that dimensions with a size of zero must be paired with a dimension of size 1 or 0 in the
other array, and that the output has a dimension size of 0.

Az 1-by-0

B: 3-by-1
Result: 3-by-0

Inputs with Incompatible Sizes

Incompatible inputs have sizes that can not be implicitly expanded to be the same size.
For example:

* One of the dimension sizes are not equal, and neither is 1.

2-23

2 Program Components

A: 3-by-2
B: 4-by-2

* Two nonscalar row vectors with lengths that are not the same.

A: 1-by-3
B: 1-by-4
Examples

Subtract Vector from Matrix

To simplify vector-matrix operations, use implicit expansion with dimensional functions
such as sum, mean, min, and others.

For example, calculate the mean value of each column in a matrix, then subtract the
mean value from each element.

A = magic(3)
A =
8 1 6
3 5 7
4 9 2
C = mean(A)
C =
5 5 5
A-C
ans =
3 -4 1
-2 0 2
-1 4 -3

Add Row and Column Vector

Row and column vectors have compatible sizes, and when you perform an operation on
them the result is a matrix.

2-24

Compatible Array Sizes for Basic Operations

For example, add a row and column vector. The result is the same as

bsxfun(@plus,a,b).
a=1[1234]

ans =

b = [5; 6; 71

ans =
5
6
7
a+b
ans =
6 7 8 9
7 8 9 10
8 9 10 11
See Also
bsxfun
More About

. “Array vs. Matrix Operations” on page 2-14

. “MATLAB Operators and Special Characters” on page 2-2

2-25

2 Program Components

Array Comparison with Relational Operators

2-26

In this section...

“Array Comparison” on page 2-26

“Logic Statements” on page 2-29

Relational operators compare operands quantitatively, using operators like “less than”,
“greater than”, and “not equal to.” The result of a relational comparison is a logical array
indicating the locations where the relation is true.

These are the relational operators in MATLAB.

Symbol Function Equivalent Description

< It Less than

<= le Less than or equal to

> gt Greater than

>= ge Greater than or equal to
=S eq Equal to

== ne Not equal to

Array Comparison
Numeric Arrays

The relational operators perform element-wise comparisons between two arrays. The
arrays must have compatible sizes to facilitate the operation. Arrays with compatible
sizes are implicitly expanded to be the same size during execution of the calculation. In
the simplest cases, the two operands are arrays of the same size, or one is a scalar. For
more information, see “Compatible Array Sizes for Basic Operations” on page 2-20.

For example, if you compare two matrices of the same size, then the result is a logical
matrix of the same size with elements indicating where the relation is true.

A=1[246; 810 12]

A =

Array Comparison with Relational Operators

2 4 6
8 10 12
B=[555; 909 9]
B =
5 5 5
9 9 9
A<B
ans =
1 1 0
1 0 0

0 0 0
1 1 1

If you compare a 1-by-N row vector to an M-by-1 column vector, then MATLAB expands
each vector into an M-by-N matrix before performing the comparison. The resulting
matrix contains the comparison result for each combination of elements in the vectors.

A=1:3
A =

1 2 3
B = [2; 3]
B =

2

3
A>=B

2-27

2 Program Components

2-28

ans =
0 1 1
0 0 1
Empty Arrays

The relational operators work with arrays for which any dimension has size zero, as long
as both arrays have compatible sizes. This means that if one array has a dimension size
of zero, then the size of the corresponding dimension in the other array must be 1 or zero,
and the size of that dimension in the output is zero.

A = ones(3,0);
B = ones(3,1);
A ==
ans =
Empty matrix: 3-by-0
However, expressions such as

A==1

return an error if A is not 0-by-0 or 1-by-1. This behavior is consistent with that of all
other binary operators, such as +, -, >, <, &, |, and so on.

To test for empty arrays, use isempty(A).
Complex Numbers

* The operators >, <, >=, and <= use only the real part of the operands in performing
comparisons.

+ The operators == and ~= test both real and imaginary parts of the operands.

Inf, NaN, NaT, and undefined Element Comparisons

* Inf values are equal to other Inf values.
* NaN values are not equal to any other numeric value, including other NaN values.
* NaT values are not equal to any other datetime value, including other NaT values.

+ Undefined categorical elements are not equal to any other categorical value, including
other undefined elements.

Array Comparison with Relational Operators

Logic Statements

Use relational operators in conjunction with the logical operators A & B (AND), A
| B (OR), xor(A,B) (XOR), and ~A (NOT), to string together more complex logical
statements.

For example, you can locate where negative elements occur in two arrays.
A = [2 -1; -3 10]

A

2 -1
-3 10

B =[0-2; -3 -1]

B =
0 -2
-3 -1
A<O & B<O
ans =
0 1
1 0

For more examples, see “Find Array Elements That Meet a Condition” on page 5-2.

See Also
eqlgelgt]|le] It]| ne

More About

. “Array vs. Matrix Operations” on page 2-14
. “Compatible Array Sizes for Basic Operations” on page 2-20
. “MATLAB Operators and Special Characters” on page 2-2

2-29

2 Program Components

Operator Precedence

2-30

You can build expressions that use any combination of arithmetic, relational, and
logical operators. Precedence levels determine the order in which MATLAB evaluates
an expression. Within each precedence level, operators have equal precedence and are
evaluated from left to right. The precedence rules for MATLAB operators are shown in
this list, ordered from highest precedence level to lowest precedence level:

1 Parentheses ()
2 Transpose (. "), power (."), complex conjugate transpose ("), matrix power ()

3 Power with unary minus (.”~-), unary plus (-~+), or logical negation (."~) as well
as matrix power with unary minus (~-), unary plus (°+), or logical negation ("~).

Note: Although most operators work from left to right, the operators (*-), (-?-),
), (™M), (™), and (-™~) work from second from the right to left. It is
recommended that you use parentheses to explicitly specify the intended precedence
of statements containing these operator combinations.

4 Unary plus (+), unary minus (-), logical negation (~)

5 Multiplication (-*), right division (./), left division (.\), matrix multiplication
(*), matrix right division (/), matrix left division (\)

6 Addition (+), subtraction (-)
7 Colon operator (:)

8 Lessthan (<), less than or equal to (<=), greater than (>), greater than or equal to
(>=), equal to (==), not equal to (~=)

9 Element-wise AND (&)
10 Element-wise OR (])
11 Short-circuit AND (&&)
12 Short-circuit OR (])

Precedence of AND and OR Operators

MATLAB always gives the & operator precedence over the | operator. Although
MATLAB typically evaluates expressions from left to right, the expression a|bé&c is
evaluated as a] (b&c). It is a good idea to use parentheses to explicitly specify the
intended precedence of statements containing combinations of & and |.

Operator Precedence

The same precedence rule holds true for the && and | | operators.

Overriding Default Precedence

The default precedence can be overridden using parentheses, as shown in this example:

[3 9 5];
[2 15];

A
B
C=A./B."2
C

0.7500 9.0000 0.2000

(A./B).~2

OO0

2.2500 81.0000 1.0000

More About

. “Array vs. Matrix Operations” on page 2-14

. “Compatible Array Sizes for Basic Operations” on page 2-20
. “Array Comparison with Relational Operators” on page 2-26
. “MATLAB Operators and Special Characters” on page 2-2

2-31

2 Program Components

Average Similar Data Points Using a Tolerance

This example shows how to use uniquetol to find the average z-coordinate of 3-D points
that have similar (within tolerance) X and y coordinates.
-3,3]=[-3,3]

Use random points picked from the peaks function in the domain - as the

data set. Add a small amount of noise to the data.

Xy = rand(10000,2)*6-3;

z = peaks(xy(:,1),xy(:,2)) + 0.5-rand(10000,1);
A = Ixy z];:

plot3(A(z,1), A(:,2), A(:,3), "-7)
view(-28,32)

2-32

Average Similar Data Points Using a Tolerance

Find points that have similar X and y coordinates using uniquetol with these options:

+ Specify ByRows as true, since the rows of A contain the point coordinates.

* Specify OutputAllIndices as true to return the indices for all points that are
within tolerance of each other.

+ Specify DataScale as [1 1 Inf] to use an absolute tolerance for the X and y
coordinates, while ignoring the z-coordinate.

DS = [1 1 Inf];
[C,ia] = uniquetol(A, 0.3, "ByRows", true,
"OutputAllIndices®, true, "DataScale®, DS);

Average each group of points that are within tolerance (including the z-coordinates),
producing a reduced data set that still holds the general shape of the original data.

for k = 1:length(ia)

aveA(k,:) = mean(A(ia{k},:),1);
end

Plot the resulting averaged-out points on top of the original data.

hold on
plot3(aveA(:,1), aveA(:,2), aveA(:,3), ".r°, "MarkerSize", 15)

2-33

2 Program Components

See Also

uniquetol

More About

“Group Scattered Data Using a Tolerance” on page 2-35

2-34

Group Scattered Data Using a Tolerance

Group Scattered Data Using a Tolerance

This example shows how to group scattered data points based on their proximity to
points of interest.

Create a set of random 2-D points. Then create and plot a grid of equally spaced points on
top of the random data.

X = rand(10000,2);

[a,b] = meshgrid(0:0.1:1);

gridPoints = [a(:), b(:)];

plot(x(:,1), x(:,2), "-7)

hold on

plot(gridPoints(:,1), gridPoints(:,2), "xr", "Markersize®, 6)

2-35

2 Program Components

2-36

Use ismembertol to locate the data points in X that are within tolerance of the grid
points in gridPoints. Use these options with ismembertol:

+ Specify ByRows as true, since the point coordinates are in the rows of X.

+ Specify OutputAll Indices as true to return all of the indices for rows in X that are
within tolerance of the corresponding row in gridPoints.

[LIA,LocB] = ismembertol(gridPoints, x, 0.05,
"ByRows", true, "OutputAlllndices”®, true);

For each grid point, plot the points in X that are within tolerance of that grid point.

figure
hold on
for k = 1:length(LocB)
plot(x(LocB{k},1), x(LocB{k},2), ".%)
end
plot(gridPoints(:,1), gridPoints(:,2), "xr", “Markersize®, 6)

Group Scattered Data Using a Tolerance

1 I %, g £ e gud l,ri\"w'. L et L o
H‘ -] : :;;{'E‘S v &qﬂﬁhyﬁfr 5 3 Jﬁf
0.9F. s -xfﬁji., (o SR
I ; ".‘1._ H ‘_. s ol g* . F e "b}t‘“&ﬁ '.1. ::':"i.&_;i
T N .] «¥a -|¥

ool ;
% }d'y_‘ £k
YR oA
A -
o 2
& h :"
X ~

See Also

ismembertol

More About

“Average Similar Data Points Using a Tolerance” on page 2-32

2-37

2 Program Components

Conditional Statements

2-38

Conditional statements enable you to select at run time which block of code to execute.
The simplest conditional statement is an I statement. For example:

% Generate a random number
a = randi (100, 1);

% If it is even, divide by 2
if rem(a, 2) ==

disp(Ta is even®)

b = a/2;
end

i f statements can include alternate choices, using the optional keywords elseif or
else. For example:

a = randi(100, 1);

if a< 30
disp(“small*®)
elseif a < 80
disp("medium®)
else
disp(~large®)
end

Alternatively, when you want to test for equality against a set of known values, use a
switch statement. For example:

[dayNum, dayString] = weekday(date, "long", "en_US");

switch dayString
case "Monday*
disp("Start of the work week®)
case "Tuesday”
disp("Day 2%)
case "Wednesday*
disp("Day 3%)
case "Thursday”
disp("Day 4%)
case "Friday*
disp("Last day of the work week®)
otherwise

Conditional Statements

disp("Weekend! ")
end

For both 1f and switch, MATLAB executes the code corresponding to the first true
condition, and then exits the code block. Each conditional statement requires the end
keyword.

In general, when you have many possible discrete, known values, switch statements
are easier to read than if statements. However, you cannot test for inequality between
switch and case values. For example, you cannot implement this type of condition with
a switch:

yourNumber = input("Enter a number: ");

if yourNumber < 0O
disp("Negative™)
elseif yourNumber > 0O
disp("Positive")
else
disp(“Zero®)
end

See Also

end | if | return | switch

2-39

2 Program Components

Loop Control Statements

2-40

With loop control statements, you can repeatedly execute a block of code. There are two
types of loops:

+ for statements loop a specific number of times, and keep track of each iteration with
an incrementing index variable.

For example, preallocate a 10-element vector, and calculate five values:

X = ones(1,10);
for n = 2:6

x(n) =2 * x(n - 1);
end

+ while statements loop as long as a condition remains true.

For example, find the first integer n for which factorial (n) is a 100-digit number:

n=1;
nFactorial = 1;
while nFactorial < 1el00
n=n++1;
nFactorial = nFactorial * n;
end

Each loop requires the end keyword.

It is a good idea to indent the loops for readability, especially when they are nested (that
1s, when one loop contains another loop):

A = zeros(5,100);
for m = 1:5
for n = 1:100
A(m, n) = 1/(m + n - 1);
end
end

You can programmatically exit a loop using a break statement, or skip to the next
iteration of a loop using a continue statement. For example, count the number of lines
in the help for the magic function (that is, all comment lines until a blank line):

fid = fopen("magic.m","r");
count = O;

Loop Control Statements

while ~feof(fid)
line = fgetl(fid);
if isempty(line)
break
elseif ~strncmp(line, "%",1)
continue
end
count = count + 1;
end
fprintf("%d lines in MAGIC help\n®,count);
fclose(fid);

Tip: If you inadvertently create an infinite loop (a loop that never ends on its own), stop
execution of the loop by pressing Ctrl+C.

See Also

break | continue | end | for | while

2-41

2 Program Components

Regular Expressions

2-42

In this section...

“What Is a Regular Expression?” on page 2-42
“Steps for Building Expressions” on page 2-44

“Operators and Characters” on page 2-47

What Is a Regular Expression?

A regular expression is a sequence of characters that defines a certain pattern. You
normally use a regular expression to search text for a group of words that matches the
pattern, for example, while parsing program input or while processing a block of text.

The character vector *Joh?n\w*" is an example of a regular expression. It defines a
pattern that starts with the letters Jo, is optionally followed by the letter h (indicated

by "h?"), is then followed by the letter n, and ends with any number of word characters,
that is, characters that are alphabetic, numeric, or underscore (indicated by "\w*"). This
pattern matches any of the following:

Jon, John, Jonathan, Johnny

Regular expressions provide a unique way to search a volume of text for a particular
subset of characters within that text. Instead of looking for an exact character match as
you would do with a function like strfind, regular expressions give you the ability to
look for a particular pattern of characters.

For example, several ways of expressing a metric rate of speed are:

km/h

km/hr

km/hour
kilometers/hour
kilometers per hour

You could locate any of the above terms in your text by issuing five separate search
commands:

strfind(text, “"km/h");
strfind(text, “"km/hour®);
% etc.

Regular Expressions

To be more efficient, however, you can build a single phrase that applies to all of these
search terms:

|'h" or 'kilD'|fDllDwed by ...

\—{'m']y 'meter5'|fnllnwed by

"' oor 'per"|fnllnwed by L.

‘h' or 'hr' or 'hDur'|

Translate this phrase into a regular expression (to be explained later in this section) and
you have:

pattern = "k(ilo)?m(eters)?(/|\sper\s)h(r|our)?";
Now locate one or more of the terms using just a single command:

text = ["The high-speed train traveled at 250 -,
"kilometers per hour alongside the automobile *©
"travelling at 120 km/h."];

regexp(text, pattern, "match®)

ans =
"kilometers per hour® "km/h*®

There are four MATLAB functions that support searching and replacing characters using
regular expressions. The first three are similar in the input values they accept and the
output values they return. For details, click the links to the function reference pages.

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.
regexprep Replace part of text using regular expression.
regexptranslate Translate text into regular expression.

When calling any of the first three functions, pass the text to be parsed and the
regular expression in the first two input arguments. When calling regexprep, pass an
additional input that is an expression that specifies a pattern for the replacement.

2-43

2 Program Components

2-44

Steps for Building Expressions

There are three steps involved in using regular expressions to search text for a particular
term:

1 Identify unique patterns in the string

This entails breaking up the text you want to search for into groups of like character
types. These character types could be a series of lowercase letters, a dollar sign
followed by three numbers and then a decimal point, etc.

2 Express each pattern as a regular expression

Use the metacharacters and operators described in this documentation to express
each segment of your search pattern as a regular expression. Then combine these
expression segments into the single expression to use in the search.

3 Call the appropriate search function

Pass the text you want to parse to one of the search functions, such as regexp or
regexpi, or to the text replacement function, regexprep.

The example shown in this section searches a record containing contact information
belonging to a group of five friends. This information includes each person's name,
telephone number, place of residence, and email address. The goal is to extract specific
information from the text..

contacts = { ...

"Harry 287-625-7315 Columbus, OH hparker@hmail._com®;
"Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net”;
"Mike 793-136-0975 Richmond, VA sue_and_mike@hmail_net”;
"Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net";
"Jason 697-336-7728 Montrose, CO jason_blake@mymail.com"};

The first part of the example builds a regular expression that represents the format

of a standard email address. Using that expression, the example then searches the
information for the email address of one of the group of friends. Contact information for
Janice is in row 2 of the contacts cell array:

contacts{2}

ans =
Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net

Regular Expressions

Step 1 — Identify Unique Patterns in the Text

A typical email address is made up of standard components: the user's account

name, followed by an @ sign, the name of the user's internet service provider (ISP),

a dot (period), and the domain to which the ISP belongs. The table below lists these
components in the left column, and generalizes the format of each component in the right

column.

Unique patterns of an email address

General description of each pattern

Start with the account name
jJan_stephens ...

One or more lowercase letters and underscores

jJan_stephens@horizon ...

Add '@ @ sign
jJan_stephens@ ...
Add the ISP One or more lowercase letters, no underscores

Add a dot (period)
jJan_stephens@horizon. ...

Dot (period) character

Finish with the domain
jJan_stephens@horizon.net

com or net

Step 2 — Express Each Pattern as a Regular Expression

In this step, you translate the general formats derived in Step 1 into segments of a
regular expression. You then add these segments together to form the entire expression.

The table below shows the generalized format descriptions of each character pattern in
the left-most column. (This was carried forward from the right column of the table in
Step 1.) The second column shows the operators or metacharacters that represent the

character pattern.

Description of each segment Pattern

One or more lowercase letters and underscores [a-z_]+

@ sign @

One or more lowercase letters, no underscores [a-z]+
Dot (period) character \.

com or het (com|net)

2-45

2 Program Components
d P

2-46

Assembling these patterns into one character vector gives you the complete expression:
email = "[a-z_]+@[a-z]+\.(com]net)";
Step 3 — Call the Appropriate Search Function

In this step, you use the regular expression derived in Step 2 to match an email address
for one of the friends in the group. Use the regexp function to perform the search.

Here is the list of contact information shown earlier in this section. Each person's record
occupies a row of the contacts cell array:

contacts = { ...

"Harry 287-625-7315 Columbus, OH hparker@hmail._com®;
"Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net”;
"Mike 793-136-0975 Richmond, VA sue_and_mike@hmail_net";
"Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net";
"Jason 697-336-7728 Montrose, CO jason_blake@mymail.com®"};

This is the regular expression that represents an email address, as derived in Step 2:
email = "[a-z_]+@[a-z]+\-(com]net)";

Call the regexp function, passing row 2 of the contacts cell array and the email
regular expression. This returns the email address for Janice.

regexp(contacts{2}, email, "match®)

ans =
"jan_stephens@horizon.net”

MATLAB parses a character vector from left to right, “consuming” the vector as it goes.
If matching characters are found, regexp records the location and resumes parsing the
character vector, starting just after the end of the most recent match.

Make the same call, but this time for the fifth person in the list:
regexp(contacts{5}, email, "match®)

ans =
"jason_blake@mymail.com*

You can also search for the email address of everyone in the list by using the entire cell
array for the input argument:

regexp(contacts, email, "match®);

Regular Expressions

Operators and Characters

Regular expressions can contain characters, metacharacters, operators, tokens, and flags
that specify patterns to match, as described in these sections:
+ “Metacharacters” on page 2-47

+ “Character Representation” on page 2-48

* “Quantifiers” on page 2-49

* “Grouping Operators” on page 2-50

* “Anchors” on page 2-51

* “Lookaround Assertions” on page 2-51

+ “Logical and Conditional Operators” on page 2-52

* “Token Operators” on page 2-53

* “Dynamic Expressions” on page 2-54

+ “Comments” on page 2-55

+ “Search Flags” on page 2-55
Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to
construct a generalized pattern of characters.

Metacharacter | Description Example
Any single character, including " _.ain" matches sequences of five
white space consecutive characters that end with
"ain”.
[cicocs] Any character contained within the |"[rp.Jain® matches "rain® or "pain*®

brackets. The following characters |or “.ain”.
are treated literally: $ | . * + ?
and - when not used to indicate a

range.

[~cicocs] Any character not contained "[**rp]ain® matches all four-letter
within the brackets. The following |sequences that end in "ain”, except
characters are treated literally: $ "rain® and "pain” and “*ain’. For
| - * + ?and - when not used to |example, it matches "gain®, "lain”, or
indicate a range. "vain®.

2-47

2 Program Components

Metacharacter | Description Example

[ci-cq] Any character in the range of c; "[A-G] " matches a single character in the
through c, range of A through G.

\w Any alphabetic, numeric, or "\w*" identifies a word.
underscore character. For English
character sets, \w i1s equivalent to
[a-zA-Z_0-9]

\W Any character that is not alphabetic, | "\W* " identifies a term that is not a word.
numeric, or underscore. For English
character sets, \W is equivalent to
[ra-zA-Z_0-9]

\s Any white-space character; "\w*n\s" matches words that end with
equivalent to [\F\n\r\t\v] the letter n, followed by a white-space

character.

\S Any non-white-space character; "\d\S" matches a numeric digit followed
equivalent to [\F\n\r\t\v] by any non-white-space character.

\d Any numeric digit; equivalent to "\d*" matches any number of consecutive
[0-9] digits.

\D Any nondigit character; equivalent | *\w*\D\>" matches words that do not

to [~0-9]

end with a numeric digit.

\oN or \o{N}

Character of octal value N

"\o{40}" matches the space character,
defined by octal 40.

\XN or \x{N}

Character of hexadecimal value N

"\Xx2C" matches the comma character,
defined by hex 2C.

Character Representation

Operator Description

\a Alarm (beep)
\b Backspace

\f Form feed

\n New line

\r Carriage return
\t Horizontal tab

2-48

Regular Expressions

Operator Description
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match
literally (for example, use \\ to match a single backslash)
Quantifiers
Quantifiers specify the number of times a pattern must occur in the matching text.
Quantifier Matches the expression when it occurs... |Example
expr* 0 or more times consecutively. "\w*" matches a word of any length.
expr? 0 times or 1 time. “\w*(\.m)?" matches words that
optionally end with the extension .m.
expr+ 1 or more times consecutively. "" matches
an HTML tag when the file name
contains one or more characters.
expr{m,n} At least m times, but no more than n "\S{4,8}" matches between four and
times consecutively. eight non-white-space characters.
{0, 1%} is equivalent to ?.
expr{m,} At least m times consecutively. "" matches
' an <a> HTML tag when the file name
{0,} and {1, } are equivalent to * contains one or more characters.
and +, respectively.
expr{n} Exactly n times consecutively. "\d{4}" matches four consecutive digits.
Equivalent to {n,n}.
Quantifiers can appear in three modes, described in the following table. g represents any
of the quantifiers in the previous table.
Mode Description Example
exprq Greedy expression: match as many Given the text

characters as possible.

"<tr><td><p>text</p></td>", the
expression "</?t.*>" matches all
characters between <tr and /td>:

"<tr><td><p>text</p></td>"

2-49

2 Program Components

Mode Description Example

exprq? Lazy expression: match as few Given the
characters as necessary. text " <tr><td><p>text</p></td>",

the expression "</?t.*?>" ends each
match at the first occurrence of the
closing bracket (>):

<tr>* "<td>" "</td>"

exprq+ Possessive expression: match as much as|Given the
possible, but do not rescan any portions |text®<tr><td><p>text</p></td>",
of the text. the expression "</?t.*+>" does not

return any matches, because the closing
bracket is captured using .*, and is not
rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to multiple elements,

or disable backtracking in a specific group.

Grouping Description Example

Operator

(expr) Group elements of the expression and *Joh?n\s(\w*) " captures a token that
capture tokens. contains the last name of any person

with the first name John or Jon.

(?:expr) Group, but do not capture tokens. "(?:[aeiou][*aeiou]){2}" matches

two consecutive patterns of a vowel
followed by a nonvowel, such as "anon®.
Without grouping, " [aeiou][aeiou]
{23} "matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack "A(?>.*)Z" does not match "AtoZ",
within the group to complete the match, |although "A(?:.*)Z" does. Using the
and do not capture tokens. atomic group, Z is captured using .* and

1s not rescanned.

(expri] Match expression exprl or expression |"(let]tel)\w+" matches words that

expr2) expr2. start with let or tel.

2-50

Regular Expressions

Grouping Description Example
Operator
If there is a match with exprl, then
expr2 is ignored.
You can include ?: or ?> after the
opening parenthesis to suppress tokens
or group atomically.
Anchors
Anchors in the expression match the beginning or end of a character vector or word.
Anchor Matches the... Example
Nexpr Beginning of the input text. "AM\w* " matches a word starting with
M at the beginning of the text.
expr$ End of the input text. "\w*m$ " matches words ending with m
at the end of the text.
\<expr Beginning of a word. "\<n\w*" matches any words starting
with n.
expr\> End of a word. "\w*e\>" matches any words ending
with e.
Lookaround Assertions
Lookaround assertions look for patterns that immediately precede or follow the intended
match, but are not part of the match.
The pointer remains at the current location, and characters that correspond to the test
expression are not captured or discarded. Therefore, lookahead assertions can match
overlapping character groups.
Lookaround Description Example
Assertion

expr(?=test)

Look ahead for characters that match
test.

"\w*(?=ing) " matches terms that are
followed by ing, such as "Fly" and
"fall” in the input text "Flying,
not falling."

2-51

2 Program Components

match test.

Lookaround Description Example
Assertion
expr(?1test) |Look ahead for characters that donot |"i1(?!ng) " matches instances of the

letter 1 that are not followed by ng.

(?<=test)expr

Look behind for characters that match
test.

" (?<=re)\w*" matches terms that
follow "re”, such as "new”, "use”, and
"cycle” in the input text "renew,
reuse, recycle”

(?<Itest)expr

Look behind for characters that do not
match test.

"(?<N\d) (\d) (?I\d) " matches single-
digit numbers (digits that do not precede
or follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a
logical AND.

Operation

Description

Example

(?=test)expr

Match both test and expr.

"(?=[a-z])["aeiou] " matches
consonants.

(?1test)expr

Match expr and do not match test.

"(?1[aeiou])[a-z]" matches
consonants.

For more information, see “Lookahead Assertions in Regular Expressions” on page

2-57.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and
then use the outcome to determine which pattern, if any, to match next. These operators
support logical OR and if or if/else conditions. (For AND conditions, see “Lookaround
Assertions” on page 2-51.)

Conditions can be tokens, lookaround assertions, or dynamic expressions of the form (?
@cmd). Dynamic expressions must return a logical or numeric value.

Conditional Operator Description Example
expriljexpr2 Match expression exprl or "(let] tel)\w+" matches words
expression expr2. that start with let or tel.

2-52

Regular Expressions

Conditional Operator

Description

Example

If there is a match with expril,
then expr2 is ignored.

(?(cond)expr) If condition cond is true, then "(??@ispc)[A-Z]:\\)"
match expr. matches a drive name, such as C:\,
when run on a Windows system.
(?(cond)expri] If condition cond is true, then "Mr(s?)\..*?(?(1)her|his)
expr2) match exprl. Otherwise, match |\w*" matches text that includes

expr2.

her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular
expression in parentheses. You can refer to a token by its sequence in the text (an ordinal
token), or assign names to tokens for easier code maintenance and readable output.

Ordinal Token Operator

Description

Example

(expr)

Capture in a token the characters
that match the enclosed
expression.

"Joh?n\s(\w*) " captures a token
that contains the last name of any
person with the first name John or
Jon.

\N Match the Nth token. "<Q\w+) . *>_*</\1>" captures
tokens for HTML tags, such
as "title" from the text
"<title>Some text</title>".
C(\N)exprl]expr2) If the Nth token is found, then "Mr(s?)\..*?(?(her|his)

match exprl. Otherwise, match
expr2.

\w** matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Named Token Operator

Description

Example

(?<name>expr)

Capture in a named token
the characters that match the
enclosed expression.

" (?<month>\d+)-(?<day>\d+)-
(?<yr>\d+) " creates named tokens
for the month, day, and year in an
input date of the form mm-dd-yy.

2-53

2 Program Components

Named Token Operator | Description Example
\k<name> Match the token referred to by "<(?<tag>\wt+) . *>_*</
name. \k<tag>>" captures tokens for

HTML tags, such as "title" from
the text "<title>Some text</
title>".

?(name)expri] If the named token is found, then |*Mr(?<sex>s?)\..*?(?

expr2) match exprl. Otherwise, match |(sex)her|his) \w*" matches

expr2.

text that includes her when the text
begins with Mrs, or that includes
his when the text begins with Mr.

Note: If an expression has nested parentheses, MATLAB captures tokens that
correspond to the outermost set of parentheses. For example, given the search pattern

"(and(y|rew)) ", MATLAB creates a token for "andrew” but not for "y" or "rew".

For more information, see “Tokens in Regular Expressions” on page 2-60.

Dynamic Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression
to determine the text to match.

The parentheses that enclose dynamic expressions do not create a capturing group.

Operator

Description

Example

(??expr)

Parse expr and include the resulting
term in the match expression.

When parsed, expr must correspond
to a complete, valid regular
expression. Dynamic expressions that
use the backslash escape character (\)
require two backslashes: one for the
initial parsing of expr, and one for the
complete match.

"AAAHD)(CAN\W{SLP)) "
determines how many characters
to match by reading a digit at

the beginning of the match. The
dynamic expression is enclosed in
a second set of parentheses so that
the resulting match is captured in
a token. For instance, matching
"5XXXXX"® captures tokens for "5
and " XXXXX*".

2-54

Regular Expressions

Operator Description Example

(??@cmd) Execute the MATLAB command "(-{2,})-?22afliplr($1))"
represented by cmd, and include the |finds palindromes that are at least
output returned by the command in four characters long, such as "abba*”.
the match expression.

(?@cmd) Execute the MATLAB command \w*?(QA\w) (?@disp($1))\1\w**"

represented by cmd, but discard any
output the command returns. (Helpful
for diagnosing regular expressions.)

matches words that include double
letters (such as pp), and displays
Iintermediate results.

Within dynamic expressions, use the following operators to define replacement terms.

Replacement Operator

Description

$& or $0 Portion of the input text that is currently a match

$ Portion of the input text that precedes the current match

$- Portion of the input text that follows the current match (use $"* to
represent $")

$N Nth token

$<name> Named token

${cmd} Output returned when MATLAB executes the command, cmd

For more information, see “Dynamic Regular Expressions” on page 2-66.

Comments

The comment operator enables you to insert comments into your code to make it more
maintainable. The text of the comment is ignored by MATLAB when matching against
the input text.

Characters

Description

Example

(?#comment)

Insert a comment in the regular
expression. The comment text is
ignored when matching the input.

"(?# Initial digit)\<\d\w+"
includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions.

2-55

2 Program Components

Flag Description

@-i) Match letter case (default for regexp and regexprep).

i) Do not match letter case (default for regexpi).

(?s) Match dot (.) in the pattern with any character (default).

(?-s) Match dot in the pattern with any character that is not a newline
character.

-m) Match the ~ and $ metacharacters at the beginning and end of text
(default).

m) Match the ~ and $ metacharacters at the beginning and end of a line.

?-x) Include space characters and comments when matching (default).

x) Ignore space characters and comments when matching. Use "\ " and
"\#" to match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

@i \w»)

The latter syntax allows you to change the behavior for part of a larger expression.

See Also

regexp | regexpi | regexprep | regexptranslate

More About

. “Lookahead Assertions in Regular Expressions” on page 2-57
. “Tokens in Regular Expressions” on page 2-60

. “Dynamic Regular Expressions” on page 2-66

2-56

Lookahead Assertions in Regular Expressions

Lookahead Assertions in Regular Expressions

In this section...

“Lookahead Assertions” on page 2-57
“Overlapping Matches” on page 2-57
“Logical AND Conditions” on page 2-58

Lookahead Assertions

There are two types of lookaround assertions for regular expressions: lookahead and
lookbehind. In both cases, the assertion is a condition that must be satisfied to return a
match to the expression.

A lookahead assertion has the form (?=test) and can appear anywhere in a regular
expression. MATLAB looks ahead of the current location in the text for the test condition.
If MATLAB matches the test condition, it continues processing the rest of the expression
to find a match.

For example, look ahead in a character vector specifying a path to find the name of the
folder that contains a program file (in this case, Fileread.m).

chr = which(*fileread®)

chr =
matlabroot\toolbox\matlab\iofun\fileread.m

regexp(chr, "\w+(?=\\\w+_[mp]) ", "match®)

ans =
“1ofun*

The match expression, \w+, searches for one or more alphanumeric or underscore

characters. Each time regexp finds a term that matches this condition, it looks ahead for

a backslash (specified with two backslashes, \\), followed by a file name (\w+) with an

-mor .p extension (\. [mp]). The regexp function returns the match that satisfies the

lookahead condition, which is the folder name 1ofun.

Overlapping Matches

Lookahead assertions do not consume any characters in the text. As a result, you can use
them to find overlapping character sequences.

2-57

2 Program Components

2-58

For example, use lookahead to find every sequence of six nonwhitespace characters in a
character vector by matching initial characters that precede five additional characters:

chr = "Locate several 6-char. phrases”;
startindex = regexpi(chr,"\S(?=\S{5})")

startindex
1 8 9 16 17 24 25

The starting indices correspond to these phrases:

Locate severa everal 6-char -char. phrase hrases

Without the lookahead operator, MATLAB parses a character vector from left to right,
consuming the vector as it goes. If matching characters are found, regexp records the
location and resumes parsing the character vector from the location of the most recent
match. There is no overlapping of characters in this process.

chr = "Locate several 6-char. phrases”;
startindex = regexpi(chr, "\S{6}")

startindex =
1 8 16 24

The starting indices correspond to these phrases:

Locate severa 6-char phrase

Logical AND Conditions

Another way to use a lookahead operation is to perform a logical AND between two
conditions. This example initially attempts to locate all lowercase consonants in a
character array consisting of the first 50 characters of the help for the normest function:

helptext = help(“normest®);
chr = helptext(1:50)

chr =
NORMEST Estimate the matrix 2-norm.
NORMEST (S

Merely searching for non-vowels ([aeiou]) does not return the expected answer, as the
output includes capital letters, space characters, and punctuation:

c = regexp(chr, " [~aeiou] ", "match®)

Lookahead Assertions in Regular Expressions

CcC =
Columns 1 through 14

"t "N* "o "R* "M = "S*T T "t

= "s* "t “m* "t

Try this again, using a lookahead operator to create the following AND condition:

(lowercase letter) AND (not a vowel)

This time, the result is correct:

c = regexp(chr, " (?=[a-z])["aeiou] ", "match™)

CcC =

Note that when using a lookahead operator to perform an AND, you need to place the
match expression expr after the test expression test:

(?=test)expr or (?!test)expr

See Also

regexp | regexpi | regexprep

More About

. “Regular Expressions” on page 2-42

2-59

2 Program Components

Tokens in Regular Expressions

2-60

In this section...

“Introduction” on page 2-60

“Multiple Tokens” on page 2-61
“Unmatched Tokens” on page 2-62

“Tokens in Replacement Text” on page 2-63
“Named Capture” on page 2-64

Introduction

Parentheses used in a regular expression not only group elements of that expression
together, but also designate any matches found for that group as tokens. You can use
tokens to match other parts of the same text. One advantage of using tokens is that they
remember what they matched, so you can recall and reuse matched text in the process of
searching or replacing.

Each token in the expression is assigned a number, starting from 1, going from left to
right. To make a reference to a token later in the expression, refer to it using a backslash
followed by the token number. For example, when referencing a token generated by the
third set of parentheses in the expression, use \3.

As a simple example, if you wanted to search for identical sequential letters in a
character array, you could capture the first letter as a token and then search for a
matching character immediately afterwards. In the expression shown below, the (\S)
phrase creates a token whenever regexp matches any nonwhitespace character in the
character array. The second part of the expression, "\1", looks for a second instance of
the same character immediately following the first:

poe = ["While 1 nodded, nearly napping,
"suddenly there came a tapping,"];

[mat, tok,ext] = regexp(poe, "(\S)\1", "match-",
"tokens®, "tokenExtents");
mat

mat =
"dd" “pp” "dd" “pp”

The tokens returned in cell array tok are:

Tokens in Regular Expressions

d*, *pv, *d*, "p"
Starting and ending indices for each token in poe are:

11 11, 26 26, 35 35, 57 57

For another example, capture pairs of matching HTML tags (e.g., <a> and) and the
text between them. The expression used for this example is

expr = - <(\W+) JE?S _*2</\1>" .

The first part of the expression, "<(\w+) ", matches an opening bracket (<) followed by
one or more alphabetic, numeric, or underscore characters. The enclosing parentheses
capture token characters following the opening bracket.

The second part of the expression, * .*?>.*?" matches the remainder of this HTML tag
(characters up to the >), and any characters that may precede the next opening bracket.

The last part, "</\1>", matches all characters in the ending HTML tag. This tag is
composed of the sequence </tag>, where tag is whatever characters were captured as a
token.

hstr
expr

"<Icomment>Default
";
"<O\WH) . F?>_F2</\1>";

[mat,tok] = regexp(hstr, expr, "match®, "tokens®);
mat{:}
ans =

ans =
Default

tok{:}

Multiple Tokens

Here is an example of how tokens are assigned values. Suppose that you are going to
search the following text:

2-61

2 Program Components

andy ted bob jim andrew andy ted mark
You choose to search the above text with the following search pattern:
and(y|rew) | (t)e(d)

This pattern has three parenthetical expressions that generate tokens. When you finally
perform the search, the following tokens are generated for each match.

Match Token 1 Token 2
andy y

ted t d
andrew rew

andy y

ted t d

Only the highest level parentheses are used. For example, if the search pattern and(y|
rew) finds the text andrew, token 1 is assigned the value rew. However, if the search
pattern (and(y]rew)) is used, token 1 is assigned the value andrew.

Unmatched Tokens

For those tokens specified in the regular expression that have no match in the text
being evaluated, regexp and regexpi return an empty character vector (* ") as the
token output, and an extent that marks the position in the string where the token was
expected.

The example shown here executes regexp on a character vector specifying the path
returned from the MATLAB tempdir function. The regular expression expr includes
six token specifiers, one for each piece of the path. The third specifier [a-z]+ has no
match in the character vector because this part of the path, Profiles, begins with an
uppercase letter:

chr = tempdir

chr =
C:\WINNT\Profiles\bpascal\LOCALS~1\Temp\

expr = [*([A-Z1D\\WINND\\([a-z]+)?-*\\"

2-62

Tokens in Regular Expressions

"([a-z1HD)\\([A-Z]+~\d)\\(Temp)\\"];
[tok, ext] = regexp(chr, expr, "tokens®, "tokenExtents®);

When a token is not found in the text, regexp returns an empty character vector (" ") as
the token and a numeric array with the token extent. The first number of the extent is
the string index that marks where the token was expected, and the second number of the
extent is equal to one less than the first.

In the case of this example, the empty token is the third specified in the expression, so
the third token returned is empty:

tok{:}

ans =
"C:* "WINNT*® " "bpascal*” "LOCALS~1" "Temp*

The third token extent returned in the variable ext has the starting index set to 10,
which is where the nonmatching term, Profi les, begins in the path. The ending extent
index is set to one less than the starting index, or 9:

ext{:}
ans =
1 2
4 8
10 9
19 25
27 34
36 39

Tokens in Replacement Text

When using tokens in replacement text, reference them using $1, $2, etc. instead of
\1, \2, etc. This example captures two tokens and reverses their order. The first, $1,
is "Norma Jean® and the second, $2, is "Baker". Note that regexprep returns the
modified text, not a vector of starting indices.

regexprep(“Norma Jean Baker®, "(Q\w+\s\wt)\sQ\w+)", "$2, $1%)

ans =
Baker, Norma Jean

2-63

2 Program Components

2-64

Named Capture

If you use a lot of tokens in your expressions, it may be helpful to assign them names
rather than having to keep track of which token number is assigned to which token.

When referencing a named token within the expression, use the syntax \k<name>
instead of the numeric \1, \2, etc.:

poe = ["While 1 nodded, nearly napping,
"suddenly there came a tapping, "];

regexp(poe, " (?<anychar>.)\k<anychar>", "match®)

ans =
*dd- "pp” "dd- "pp”

Named tokens can also be useful in labeling the output from the MATLAB regular
expression functions. This is especially true when you are processing many pieces of text.

For example, parse different parts of street addresses from several character vectors. A
short name is assigned to each token in the expression:

chrl = "134 Main Street, Boulder, CO, 14923";

chr2 = "26 Walnut Road, Topeka, KA, 25384";

chr3 = "847 Industrial Drive, Elizabeth, NJ, 73548";
pl = " (?<adrs>\d+\s\S+\s(Road|Street|Avenue|Drive))"~;
p2 = "(?<city>[A-Z][a-z]+)";

p3 = "(?<state>[A-Z]{2})";

p4 = "(?<zip>\d{5})";

expr = [pl *, " p2 °, " p3 ", " p4];

As the following results demonstrate, you can make your output easier to work with by
using named tokens:

locl regexp(chrl, expr, “names®)

locl =
adrs: "134 Main Street”
city: "Boulder-
state: "CO*
zip: "14923"

loc2 = regexp(chr2, expr, "names®)

Tokens in Regular Expressions

loc2 =
adrs: "26 Walnut Road”
city: "Topeka*
state: "KA®
zip: "25384"

loc3 regexp(chr3, expr, “names-”)

loc3 =
adrs: "847 Industrial Drive*®
city: "Elizabeth*
state: "NJ*
zip: "73548"

See Also

regexp | regexpi | regexprep

More About

. “Regular Expressions” on page 2-42

2-65

2 Program Components

Dynamic Regular Expressions

2-66

In this section...

“Introduction” on page 2-66

“Dynamic Match Expressions — (??expr)” on page 2-67

“Commands That Modify the Match Expression — (??@cmd)” on page 2-68
“Commands That Serve a Functional Purpose — (?@cmd)” on page 2-69

“Commands in Replacement Expressions — ${cmd}” on page 2-71

Introduction

In a dynamic expression, you can make the pattern that you want regexp to match
dependent on the content of the input text. In this way, you can more closely match
varying input patterns in the text being parsed. You can also use dynamic expressions
in replacement terms for use with the regexprep function. This gives you the ability to
adapt the replacement text to the parsed input.

You can include any number of dynamic expressions in the match_expr or
replace_expr arguments of these commands:

regexp(text, match_expr)
regexpi (text, match_expr)
regexprep(text, match_expr, replace_expr)

As an example of a dynamic expression, the following regexprep command correctly
replaces the term internationalization with its abbreviated form, i18n. However,
to use it on a different term such as globalization, you have to use a different
replacement expression:

match_expr = “(™M\wW) QAw*) QAw$) " ;

replace_exprl = "$118%$3";
regexprep(internationalization®, match_expr, replace_exprl)

ans =
i18n

replace_expr2 = "$111$3";
regexprep(“globalization®, match_expr, replace_expr2)

Dynamic Regular Expressions

ans =
gllin

Using a dynamic expression ${num2str(length($2))} enables you to base the
replacement expression on the input text so that you do not have to change the
expression each time. This example uses the dynamic replacement syntax ${cmd}.

match_expr = “(™M\wW) QAw*) QAw$) " ;
replace_expr = "1{num2str(length($2))}$3";

regexprep(”internationalization®, match_expr, replace_expr)

ans =
i18n

regexprep(“globalization®, match_expr, replace_expr)

ans =
glln

When parsed, a dynamic expression must correspond to a complete, valid regular
expression. In addition, dynamic match expressions that use the backslash escape
character (\) require two backslashes: one for the initial parsing of the expression, and
one for the complete match. The parentheses that enclose dynamic expressions do not
create a capturing group.

There are three forms of dynamic expressions that you can use in match expressions, and
one form for replacement expressions, as described in the following sections

Dynamic Match Expressions — (??expr)

The (??expr) operator parses expression expr, and inserts the results back into the
match expression. MATLAB then evaluates the modified match expression.

Here is an example of the type of expression that you can use with this operator:

chr = L"5XXXXX", "8XXXXXXXX®™, "1X"};
regexp(chr, “"~"(\d+)(??X{$1})$", "match®, "once");

The purpose of this particular command is to locate a series of X characters in each of
the character vectors stored in the input cell array. Note however that the number of Xs
varies in each character vector. If the count did not vary, you could use the expression
X{n} to indicate that you want to match n of these characters. But, a constant value of n
does not work in this case.

2-67

2 Program Components

2-68

The solution used here is to capture the leading count number (e.g., the 5 in the first
character vector of the cell array) in a token, and then to use that count in a dynamic
expression. The dynamic expression in this example is (??X{$1}), where $1 is the value
captured by the token \d+. The operator {$1} makes a quantifier of that token value.
Because the expression is dynamic, the same pattern works on all three of the input
vectors in the cell array. With the first input character vector, regexp looks for five X
characters; with the second, it looks for eight, and with the third, it looks for just one:

regexp(chr, “"~(\d+)(??X{$1})$", "match", "once")

ans =
" 5XXXXX™ " BXXXXXXXX™ "1X*

Commands That Modify the Match Expression — (??@cmd)

MATLAB uses the (??@cmd) operator to include the results of a MATLAB command in
the match expression. This command must return a term that can be used within the
match expression.

For example, use the dynamic expression (??@F1ilplr($1)) to locate a palindrome,
“Never Odd or Even”, that has been embedded into a larger character vector.

First, create the input string. Make sure that all letters are lowercase, and remove all
nonword characters.

chr = lower(...
"Find the palindrome Never O0dd or Even in this string”);

chr = regexprep(str, “\W*", *")

chr =
findthepal indromeneveroddoreveninthisstring

Locate the palindrome within the character vector using the dynamic expression:

palchr = regexp(chr, "(.{3.}).?(??@fliplr($1))", "match™)

palchr =
"neveroddoreven*

The dynamic expression reverses the order of the letters that make up the character
vector, and then attempts to match as much of the reversed-order vector as possible. This
requires a dynamic expression because the value for $1 relies on the value of the token

-{3.1.

Dynamic Regular Expressions

Dynamic expressions in MATLAB have access to the currently active workspace.

This means that you can change any of the functions or variables used in a dynamic
expression just by changing variables in the workspace. Repeat the last command of the
example above, but this time define the function to be called within the expression using
a function handle stored in the base workspace:

fun = @Fliplr;

palchr = regexp(str, "(.{3,}).?(??@fun($1))", "match")

palchr =
"neveroddoreven”

Commands That Serve a Functional Purpose — (?@cmd)

The (?@cmd) operator specifies a MATLAB command that regexp or regexprep is to
run while parsing the overall match expression. Unlike the other dynamic expressions
in MATLAB, this operator does not alter the contents of the expression it is used in.
Instead, you can use this functionality to get MATLAB to report just what steps it is
taking as it parses the contents of one of your regular expressions. This functionality can
be useful in diagnosing your regular expressions.

The following example parses a word for zero or more characters followed by two
identical characters followed again by zero or more characters:

regexp("mississippi”, "\w*Q\w)\1\w*", "match®)

ans =
"mississippi”

To track the exact steps that MATLAB takes in determining the match, the example
inserts a short script (?@disp($1)) in the expression to display the characters that
finally constitute the match. Because the example uses greedy quantifiers, MATLAB
attempts to match as much of the character vector as possible. So, even though MATLAB
finds a match toward the beginning of the string, it continues to look for more matches
until it arrives at the very end of the string. From there, it backs up through the letters i
then p and the next p, stopping at that point because the match is finally satisfied:

regexp("mississippi”, "\w*Qw)(?@disp($1))\1\w*", "match")
i
p
p

2-69

2 Program Components

2-70

ans =
"mississippi”

Now try the same example again, this time making the first quantifier lazy (*?). Again,
MATLAB makes the same match:

regexp("mississippi”, "\w*?Q\WwW)\1\w*", "match")

ans =
"mississippi”

But by inserting a dynamic script, you can see that this time, MATLAB has matched the
text quite differently. In this case, MATLAB uses the very first match it can find, and
does not even consider the rest of the text:

regexp("mississippi”, "\w*?Q\w)(?@disp($1))\1\w*", "match®)

m
i
s

ans =
"mississippi”

To demonstrate how versatile this type of dynamic expression can be, consider the next
example that progressively assembles a cell array as MATLAB iteratively parses the
input text. The (?1) operator found at the end of the expression is actually an empty
lookahead operator, and forces a failure at each iteration. This forced failure is necessary
if you want to trace the steps that MATLAB is taking to resolve the expression.

MATLAB makes a number of passes through the input text, each time trying another
combination of letters to see if a fit better than last match can be found. On any passes in
which no matches are found, the test results in an empty character vector. The dynamic
script (@1 F(~isempty($&))) serves to omit the empty character vectors from the
matches cell array:

matches = {};
expr = ["(Euler\s)?(Cauchy\s)?(Boole)?(?@if(~isempty($&)), "
"matches{end+1}=%$&;end)(?!)"1;

regexp("Euler Cauchy Boole®, expr);

matches

Dynamic Regular Expressions

matches =
"Euler Cauchy Boole* "Euler Cauchy * "Euler *
"Cauchy Boole* "Cauchy * "Boole*

The operators $& (or the equivalent $0), $~, and $" refer to that part of the input

text that is currently a match, all characters that precede the current match, and all
characters to follow the current match, respectively. These operators are sometimes
useful when working with dynamic expressions, particularly those that employ the (?
@cmd) operator.

This example parses the input text looking for the letter g. At each iteration through the
text, regexp compares the current character with g, and not finding it, advances to the
next character. The example tracks the progress of scan through the text by marking the
current location being parsed with a ” character.

(The $~ and $~ operators capture that part of the text that precedes and follows the
current parsing location. You need two single-quotation marks ($" ") to express the
sequence $~ when it appears within text.)

chr = "abcdefghij”;
expr = "(?@disp(sprintf(""starting match: [%s"%s]"",$,$"")))g";

regexp(chr, expr, "“once®);

starting match: [“abcdefghij]
starting match: [a”bcdefghij]
starting match: [ab”cdefghij]
starting match: [abc™defghij]
starting match: [abcd™efghij]
starting match: [abcde~fghij]
starting match: [abcdef~ghij]

Commands in Replacement Expressions — ${cmd}

The ${cmd} operator modifies the contents of a regular expression replacement pattern,
making this pattern adaptable to parameters in the input text that might vary from one
use to the next. As with the other dynamic expressions used in MATLAB, you can include
any number of these expressions within the overall replacement expression.

In the regexprep call shown here, the replacement pattern is "${convertMe($1,
$2)}". In this case, the entire replacement pattern is a dynamic expression:

regexprep("This highway is 125 miles long®,

2-71

2 Program Components
d P

2-72

QAN AADO\NWQW+H) ", "${convertMe($1,$2)}");

The dynamic expression tells MATLAB to execute a function named convertMe using
the two tokens (\d+\.?\d*) and (\w+), derived from the text being matched, as input
arguments in the call to convertMe. The replacement pattern requires a dynamic
expression because the values of $1 and $2 are generated at runtime.

The following example defines the file named convertMe that converts measurements
from imperial units to metric.

function valout = convertMe(valin, units)
switch(units)
case "“inches”
fun = @Cin)in .* 2.54;
uout = "centimeters”;
case "miles”
fun = @(mi)mi .* 1.6093;
uout = “kilometers”;
case “pounds*®
fun = @(Ib)Ib .* 0.4536;
uout = “kilograms®;
case “pints”
fun = @(pt)pt .* 0.4731;
uout = "litres”;
case °“ounces”
fun = @(oz)oz .* 28.35;
uout = “grams”;
end
val = fun(str2num(valin));
valout = [num2str(val) " " uout];
end

At the command line, call the convertMe function from regexprep, passing in values
for the quantity to be converted and name of the imperial unit:

regexprep("This highway is 125 miles long®, ...
O\ 2AAAD\NWAWH) ", "${convertMe($1,$2)}")

ans =
This highway is 201.1625 kilometers long

regexprep("This pitcher holds 2.5 pints of water”,
QAN AADO\NWQW+H) ", "${convertMe($1,$2)}")

ans =

Dynamic Regular Expressions

This pitcher holds 1.1828 litres of water

regexprep("This stone weighs about 10 pounds®, ...
O\ AAAD\NWAQW+H) ", "${convertMe($1,$2)}")

ans =
This stone weighs about 4.536 kilograms

As with the (??@) operator discussed in an earlier section, the ${ } operator has
access to variables in the currently active workspace. The following regexprep
command uses the array A defined in the base workspace:

A = magic(3)

A =
8 1 6
3 5 7
4 9 2

regexprep("The columns of matrix _nam are _val~,
{"_nam®*, " _val"}, ...
{"A", "${sprintf(""%dud%d """, A)}"})

ans =
The columns of matrix A are 834 159 672

See Also

regexp | regexpi | regexprep

More About

. “Regular Expressions” on page 2-42

2-73

2 Program Components

Comma-Separated Lists

In this section...

“What Is a Comma-Separated List?” on page 2-74

“Generating a Comma-Separated List” on page 2-74

“Assigning Output from a Comma-Separated List” on page 2-76
“Assigning to a Comma-Separated List” on page 2-77

“How to Use the Comma-Separated Lists” on page 2-79

“Fast Fourier Transform Example” on page 2-81

What Is a Comma-Separated List?

Typing in a series of numbers separated by commas gives you what is called a comma-
separated list. The MATLAB software returns each value individually:

1,2,3
ans =
1
ans =
2
ans =
3

Such a list, by itself, is not very useful. But when used with large and more complex data
structures like MATLAB structures and cell arrays, the comma-separated list can enable
you to simplify your MATLAB code.

Generating a Comma-Separated List

This section describes how to generate a comma-separated list from either a cell array or
a MATLAB structure.

2-74

Comma-Separated Lists

Generating a List from a Cell Array

Extracting multiple elements from a cell array yields a comma-separated list. Given a 4-
by-6 cell array as shown here

C = cell(4,6);

for k = 1:24
C{k} = k*2;

end

C

C =

[2] [10] [18] [26] [34] [42]

[4] [12] [20] [28] [36] [44]

[6] [14] [22] [30] [38] [46]

[8] [16] [24] [32] [40] [48]
extracting the fifth column generates the following comma-separated list:
c{:,5}

ans =

34

ans =

ans =

ans =

40

This is the same as explicitly typing

c{1,5},Cc{2,5},C{3,5},C{4,5}

2-75

2 Program Components

Generating a List from a Structure

For structures, extracting a field of the structure that exists across one of its dimensions
yields a comma-separated list.

Start by converting the cell array used above into a 4-by-1 MATLAB structure with
six fields: 1 through 6. Read field 5 for all rows and MATLAB returns a comma-
separated list:

S = cell2struct(C,{"f1","f2","F3","Ff4","f5","16"},2);
S.f5

ans =

34

ans =

36

ans =

38

ans =
40

This is the same as explicitly typing
S(1).¥5,5(2).¥5,5(3).¥5,5(4) .5

Assigning Output from a Comma-Separated List

You can assign any or all consecutive elements of a comma-separated list to variables
with a simple assignment statement. Using the cell array C from the previous section,
assign the first row to variables c1 through c6:

C = cell(4,6);

for k = 1:24
C{k} = k*2;

2-76

Comma-Separated Lists

end
[cl,c2,c3,c4,c5,c6] = C{1,1:6%};
c5

c =

34
If you specify fewer output variables than the number of outputs returned by the
expression, MATLAB assigns the first N outputs to those N variables, and then discards
any remaining outputs. In this next example, MATLAB assigns C{1,1:3} to the
variables c1, c2, and c3, and then discards C{1,4:6}:

[cl,c2,c3] = C{1,1:6};

You can assign structure outputs in the same manner:

S = cell2struct(C,{ f1", 2,3, F4", 5", 16"},2);
[sfl,sf2,sf3] = S.T5;

sf3

sf3 =

38
You also can use the deal function for this purpose.
Assigning to a Comma-Separated List

The simplest way to assign multiple values to a comma-separated list is to use the deal
function. This function distributes all of its input arguments to the elements of a comma-
separated list.

This example uses deal to overwrite each element in a comma-separated list. First
create a list.

c{1} = [31 07];
c{2} = [03 78];
c{:}
ans =

31 7
ans =

2-77

2 Program Components

3 78

Use deal to overwrite each element in the list.

[c{:}] = deal([10 20],[14 12]);

c{:}
ans =

10 20
ans =

14 12

This example does the same as the one above, but with a comma-separated list of vectors
in a structure field:

s(1).fieldl = [31 07];
s(2).fieldl = [03 78];
s.fieldl
ans =

31 7
ans =

3 78

Use deal to overwrite the structure fields.

[s.fieldl] = deal ([10 20],[14 12]);

s.fieldl
ans =

10 20
ans =

14 12

2-78

Comma-Separated Lists

How to Use the Comma-Separated Lists

Common uses for comma-separated lists are

+ “Constructing Arrays” on page 2-79

+ “Displaying Arrays” on page 2-79

+ “Concatenation” on page 2-80

* “Function Call Arguments” on page 2-80

+ “Function Return Values” on page 2-81

The following sections provide examples of using comma-separated lists with cell arrays.
Each of these examples applies to MATLAB structures as well.

Constructing Arrays

You can use a comma-separated list to enter a series of elements when constructing a
matrix or array. Note what happens when you insert a list of elements as opposed to
adding the cell itself.

When you specify a list of elements with C{:, 5}, MATLAB inserts the four individual
elements:

A

{"Hello",C{:,5},magic(4)}
A

"Hello" [34] [36] [38] [40] [4x4 double]
When you specify the C cell itself, MATLAB inserts the entire cell array:
A = {"Hello",C,magic(4)}

A =

"Hello* {4x6 cell} [4x4 double]
Displaying Arrays
Use a list to display all or part of a structure or cell array:
A{:}

ans =

2-79

rogram Components
2 Prog Comp

2-80

Hello

ans =

[2] [10] [18] [26] [34] [42]
[4] [12] [20] [28] [36] [44]
[61 [14] [22] [30] [38] [46]
8l [16] [24] [32] [40] [48]

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
Concatenation

Putting a comma-separated list inside square brackets extracts the specified elements
from the list and concatenates them:

A [C{:,5:6}]

A =
34 36 38 40 42 44 46 48
Function Call Arguments

When writing the code for a function call, you enter the input arguments as a list with
each argument separated by a comma. If you have these arguments stored in a structure
or cell array, then you can generate all or part of the argument list from the structure

or cell array instead. This can be especially useful when passing in variable numbers of
arguments.

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/l1l0:pi;

Y = tan(sin(X)) - sin(tan(X));
C = cell(2,3);

C{1,1} = "LineWidth";

Comma-Separated Lists

c{2,1} = 2;

C{1,2} = "MarkerEdgeColor";
c{2,2} = "k";

C{1,3} = "MarkerFaceColor";
C{2,3} = "g";

figure

plot(X,Y, " --rs",C{:})
Function Return Values

MATLAB functions can also return more than one value to the caller. These values are
returned in a list with each value separated by a comma. Instead of listing each return
value, you can use a comma-separated list with a structure or cell array. This becomes
more useful for those functions that have variable numbers of return values.

This example returns three values to a cell array:

cell(1,3);
31 = Fileparts("work/mytests/strArrays.mat®)

1l

C
[C
C

"work/mytests” "strArrays” .mat

Fast Fourier Transform Example

The Fftshift function swaps the left and right halves of each dimension of an array.
For a simple vector suchas [0 2 4 6 8 10] the output wouldbe [6 8 10 0 2 4].
For a multidimensional array, FFtshift performs this swap along each dimension.

fftshift uses vectors of indices to perform the swap. For the vector shown above, the
index [1 2 3 4 5 6] is rearranged to form a new index [4 5 6 1 2 3]. The function
then uses this index vector to reposition the elements. For a multidimensional array,
FFtshift must construct an index vector for each dimension. A comma-separated list
makes this task much simpler.

Here is the fftshi ft function:

function y = fftshift(x)
numDims = ndims(X);
idx = cell(1,numDims);
for k 1:numDims
m size(x,k);

2-81

2 Program Components

2-82

p = ceil(m/2);
idx{k} = [p+1:m 1:p];
end

y = x(idx{:});

end

The function stores the index vectors in cell array idx. Building this cell array is
relatively simple. For each of the N dimensions, determine the size of that dimension and
find the integer index nearest the midpoint. Then, construct a vector that swaps the two
halves of that dimension.

By using a cell array to store the index vectors and a comma-separated list for the
indexing operation, FFtshift shifts arrays of any dimension using just a single
operation: y = X(@dx{:}). If you were to use explicit indexing, you would need to write
one 1T statement for each dimension you want the function to handle:

if ndims(x) ==
y = x(index1);

else if ndims(x) ==
y = x(index1, index2);
end

end

Another way to handle this without a comma-separated list would be to loop over each
dimension, converting one dimension at a time and moving data each time. With a
comma-separated list, you move the data just once. A comma-separated list makes it very
easy to generalize the swapping operation to an arbitrary number of dimensions.

Alternatives to the eval Function

Alternatives to the eval Function

In this section...
“Why Avoid the eval Function?” on page 2-83
“Variables with Sequential Names” on page 2-83

“Files with Sequential Names” on page 2-84
“Function Names in Variables” on page 2-85
“Field Names in Variables” on page 2-85
“Error Handling” on page 2-86

Why Avoid the eval Function?

Although the eval function is very powerful and flexible, it is not always the best
solution to a programming problem. Code that calls eval is often less efficient and more
difficult to read and debug than code that uses other functions or language constructs.
For example:

+ MATLAB compiles code the first time you run it to enhance performance for future
runs. However, because code in an eval statement can change at run time, it is not
compiled.

* Code within an eval statement can unexpectedly create or assign to a variable
already in the current workspace, overwriting existing data.

+ Concatenated character vectors within an eval statement are often difficult to read.
Other language constructs can simplify the syntax in your code.

For many common uses of eval, there are preferred alternate approaches, as shown in
the following examples.

Variables with Sequential Names

A frequent use of the eval function is to create sets of variables such as A1, A2, .. .,

An, but this approach does not use the array processing power of MATLAB and is not
recommended. The preferred method is to store related data in a single array. If the data
sets are of different types or sizes, use a structure or cell array.

For example, create a cell array that contains 10 elements, where each element is a
numeric array:

2-83

2 Program Components

2-84

numArrays = 10;

A = cell(numArrays,1);

for n = 1:numArrays
A{n} = magic(n);

end

Access the data in the cell array by indexing with curly braces. For example, display the
fifth element of A:

A{5}

ans =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

The assignment statement A{n} = magic(n) is more elegant and efficient than this
call to eval:

eval(["A", int2str(n),” = magic(n)"] % Not recommended
For more information, see:

+ “Create Cell Array” on page 12-3

+ “Create Structure Array” on page 11-2

Files with Sequential Names

Related data files often have a common root name with an integer index, such as
myFilel_mat through myfileN.mat. A common (but not recommended) use of the eval
function is to construct and pass each file name to a function using command syntax,
such as

eval(["save myfile”,int2str(n), " .mat"]) % Not recommended

The best practice is to use function syntax, which allows you to pass variables as inputs.
For example:

currentFile = "myfilel_mat”;
save(currentFile)

Alternatives to the eval Function

You can construct file names within a loop using the sprintf function (which is usually
more efficient than Int2str), and then call the save function without eval. This code
creates 10 files in the current folder:

numFiles = 10;

for n = 1:numFiles
randombData = rand(n);
currentFile = sprintf("myfile%d.mat”,n);
save(currentFile, "randomData®)

end

For more information, see:

+ “Command vs. Function Syntax” on page 1-9

* “Import or Export a Sequence of Files”

Function Names in Variables

A common use of eval is to execute a function when the name of the function is in a
variable character vector. There are two ways to evaluate functions from variables that
are more efficient than using eval:

+ Create function handles with the @ symbol or with the str2func function. For
example, run a function from a list stored in a cell array:

examples = {@odedemo,@sunspots,@fitdemo};
n = input(“Select an example (1, 2, or 3): ");
examples{n}Q
+ Use the feval function. For example, call a plot function (such as plot, bar, or pie)
with data that you specify at run time:

plotFunction = input(“Specify a plotting function: ","s");

data = input("Enter data to plot: 7);
feval (plotFunction,data)

Field Names in Variables

Access data in a structure with a variable field name by enclosing the expression for the
field in parentheses. For example:

myData.height
myData.weight

[67, 72, 58];
[140, 205, 90];

2-85

2 Program Components

2-86

FfieldName
dataToUse

= input(“Select data (height or weight): ","s");

= myData. (fieldName);

If you enter weight at the input prompt, then you can find the minimum weight value
with the following command.

min(dataToUse)

ans =
90

For an additional example, see “Generate Field Names from Variables” on page
11-13.

Error Handling

The preferred method for error handling in MATLAB is to use a try, catch statement.
For example:

try

B = A;
catch exception

disp("A is undefined®)
end

If your workspace does not contain variable A, then this code returns:

A 1s undefined

Previous versions of the documentation for the eval function include the syntax
eval (expression,catch_expr). If evaluating the expression input returns

an error, then eval evaluates catch_expr. However, an explicit try/catch is
significantly clearer than an implicit catch in an eval statement. Using the implicit
catch is not recommended.

Classes (Data Types)

Overview of MATLAB Classes

3 Overview of MATLAB Classes

Fundamental MATLAB Classes

There are many different data types, or classes, that you can work with in the MATLAB
software. You can build matrices and arrays of floating-point and integer data,
characters and strings, and logical true and False states. Function handles connect
your code with any MATLAB function regardless of the current scope. Tables, structures,
and cell arrays provide a way to store dissimilar types of data in the same container.

There are 16 fundamental classes in MATLAB. Each of these classes is in the form

of a matrix or array. With the exception of function handles, this matrix or array is a
minimum of 0-by-0 in size and can grow to an n-dimensional array of any size. A function
handle is always scalar (1-by-1).

All of the fundamental MATLAB classes are shown in the diagram below:

Matrix or Array Scalar
(full or sparse)
function
logical char numeric table cell struct handle (@}

\/ abc { } _E @

int8, wuint8, single double
int16, uintl6,

int32, uint32,

int64, uinted

Numeric classes in the MATLAB software include signed and unsigned integers, and
single- and double-precision floating-point numbers. By default, MATLAB stores all
numeric values as double-precision floating point. (You cannot change the default type
and precision.) You can choose to store any number, or array of numbers, as integers
or as single-precision. Integer and single-precision arrays offer more memory-efficient
storage than double-precision.

All numeric types support basic array operations, such as subscripting, reshaping, and
mathematical operations.

Fundamental MATLAB Classes

You can create two-dimensional double and logical matrices using one of two storage
formats: full or sparse. For matrices with mostly zero-valued elements, a sparse
matrix requires a fraction of the storage space required for an equivalent full matrix.
Sparse matrices invoke methods especially tailored to solve sparse problems.

These classes require different amounts of storage, the smallest being a logical value
or 8-bit integer which requires only 1 byte. It is important to keep this minimum size in
mind if you work on data in files that were written using a precision smaller than 8 bits.

The following table describes the fundamental classes in more detail.

Class Name Documentation Intended Use
double, single |Floating-Point * Required for fractional numeric data.
Numbers

* Double and Single precision.

* Use realmin and realmax to show range of values.
* Two-dimensional arrays can be sparse.

* Default numeric type in MATLAB.

int8, uints, Integers * Use for signed and unsigned whole numbers.
!nt16’ L ntie, * More efficient use of memory.
INt32, uint32, . . .
int64, uint64 Use intmin and intmax to show range of values.
+ Choose from 4 sizes (8, 16, 32, and 64 bits).
char, string |“Characters and * Data type for text.
Slhebis * Native or Unicode®.
+ Converts to/from numeric.
+ Use with regular expressions.
* For multiple character arrays, use cell arrays.
+ Starting in R2016b, you also can store text in string
arrays. For more information, see string.
logical “Logical * Use in relational conditions or to test state.

. ”
Operations + Can have one of two values: true or false.

+ Also useful in array indexing.

* Two-dimensional arrays can be sparse.

function_hand|“Function Handles” Pointer to a function.

3 Overview of MATLAB Classes

Class Name

Documentation

Intended Use

Enables passing a function to another function
Can also call functions outside usual scope.
Use to specify graphics callback functions.
Save to MAT-file and restore later.

table

“Tables”

Rectangular container for mixed-type, column-oriented
data.

Row and variable names identify contents.

Use Table Properties to store metadata such as variable
units.

Manipulation of elements similar to numeric or logical
arrays.

Access data by numeric or named index.

Can select a subset of data and preserve the table
container or can extract the data from a table.

struct

“Structures”

Fields store arrays of varying classes and sizes.
Access one or all fields/indices in single operation.
Field names identify contents.

Method of passing function arguments.

Use in comma-separated lists.

More memory required for overhead

cell

“Cell Arrays”

Cells store arrays of varying classes and sizes.
Allows freedom to package data as you want.

Manipulation of elements is similar to numeric or logical
arrays.

Method of passing function arguments.
Use in comma-separated lists.

More memory required for overhead

More About

“Valid Combinations of Unlike Classes” on page 15-2

Numeric Classes

“Integers” on page 4-2

“Floating-Point Numbers” on page 4-7
“Complex Numbers” on page 4-17

“Infinity and NaN” on page 4-18
“Identifying Numeric Classes” on page 4-21

“Display Format for Numeric Values” on page 4-22

4 Numeric Classes

Integers

4-2

In this section...

“Integer Classes” on page 4-2
“Creating Integer Data” on page 4-3
“Arithmetic Operations on Integer Classes” on page 4-4

“Largest and Smallest Values for Integer Classes” on page 4-5

Integer Classes

MATLAB has four signed and four unsigned integer classes. Signed types enable you to
work with negative integers as well as positive, but cannot represent as wide a range
of numbers as the unsigned types because one bit is used to designate a positive or
negative sign for the number. Unsigned types give you a wider range of numbers, but
these numbers can only be zero or positive.

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can save memory
and execution time for your programs if you use the smallest integer type that
accommodates your data. For example, you do not need a 32-bit integer to store the value
100.

Here are the eight integer classes, the range of values you can store with each type, and
the MATLAB conversion function required to create that type:

Class Range of Values Conversion Function
Signed 8-bit integer 927t0 271 int8

Signed 16-bit integer 215 +0 9151 intl6

Signed 32-bit integer 231 to 2311 int32

Signed 64-bit integer 296315 9831 int64

Unsigned 8-bit integer 0 to 28-1 uints

Unsigned 16-bit integer 0to 2161 uintl6

Unsigned 32-bit integer 0 to 2%2-1 uint32

Unsigned 64-bit integer 0 to 2641 uint64

Integers

Creating Integer Data

MATLAB stores numeric data as double-precision floating point (double) by default. To
store data as an integer, you need to convert from double to the desired integer type.
Use one of the conversion functions shown in the table above.

For example, to store 325 as a 16-bit signed integer assigned to variable X, type
X = intl6(325);

If the number being converted to an integer has a fractional part, MATLAB rounds to the
nearest integer. If the fractional part is exactly 0.5, then from the two equally nearby
integers, MATLAB chooses the one for which the absolute value is larger in magnitude:

X = 325.499;
intle(x)
ans =

intl6

325
X = x + .001;
intle(x)
ans =

intl6

326

If you need to round a number using a rounding scheme other than the default, MATLAB
provides four rounding functions: round, Fix, Floor, and ceil. The Fix function
enables you to override the default and round towards zero when there is a nonzero
fractional part:

X = 325.9;

intl6(Fix(x))
ans =

intl6

325

4 Numeric Classes

4-4

Arithmetic operations that involve both integers and floating-point always result in

an integer data type. MATLAB rounds the result, when necessary, according to the
default rounding algorithm. The example below yields an exact answer of 1426 .75 which
MATLAB then rounds to the next highest integer:

int16(325) * 4.39
ans =

intl6
1427

The integer conversion functions are also useful when converting other classes, such as
strings, to integers:

str = "Hello World";

int8(str)
ans =

1x11 int8 row vector
72 101 108 108 111 32 87 111 114 108 100

If you convert a NaN value into an integer class, the result is a value of O in that integer
class. For example,

int32(NaN)
ans =

int32

0]

Arithmetic Operations on Integer Classes
MATLAB can perform integer arithmetic on the following types of data:

+ Integers or integer arrays of the same integer data type. This yields a result that has
the same data type as the operands:

X = uint32([132 347 528]) -* uint32(75);
class(x)
ans =

Integers

uint32

+ Integers or integer arrays and scalar double-precision floating-point numbers. This
yields a result that has the same data type as the integer operands:

X = uint32([132 347 528]) .* 75.49;
class(x)
ans =

uint32

For all binary operations in which one operand is an array of integer data type (except
64-bit integers) and the other is a scalar double, MATLAB computes the operation
using elementwise double-precision arithmetic, and then converts the result back to
the original integer data type. For binary operations involving a 64-bit integer array
and a scalar double, MATLAB computes the operation as if 80-bit extended-precision
arithmetic were used, to prevent loss of precision.

Largest and Smallest Values for Integer Classes

For each integer data type, there is a largest and smallest number that you can represent
with that type. The table shown under “Integers” on page 4-2 lists the largest and
smallest values for each integer data type in the “Range of Values” column.

You can also obtain these values with the intmax and intmin functions:

intmax("int8%)
ans =

int8
127

intmin("int8%)
ans =

int8
-128

If you convert a number that is larger than the maximum value of an integer data type
to that type, MATLAB sets it to the maximum value. Similarly, if you convert a number
that is smaller than the minimum value of the integer data type, MATLAB sets it to the
minimum value. For example,

4 Numeric Classes

X = int8(300)
X =

int8

127
X = int8(-300)
X =

int8

-128

Also, when the result of an arithmetic operation involving integers exceeds the maximum
(or minimum) value of the data type, MATLAB sets it to the maximum (or minimum)
value:

X
X

int8(100) * 3

int8
127

int8(-100) * 3

int8

-128

Floating-Point Numbers

Floating-Point Numbers

In this section...

“Double-Precision Floating Point” on page 4-7

“Single-Precision Floating Point” on page 4-7

“Creating Floating-Point Data” on page 4-8

“Arithmetic Operations on Floating-Point Numbers” on page 4-9
“Largest and Smallest Values for Floating-Point Classes” on page 4-11
“Accuracy of Floating-Point Data” on page 4-12

“Avoiding Common Problems with Floating-Point Arithmetic” on page 4-14

MATLAB represents floating-point numbers in either double-precision or single-precision
format. The default is double precision, but you can make any number single precision
with a simple conversion function.

Double-Precision Floating Point

MATLAB constructs the double-precision (or double) data type according to IEEE®
Standard 754 for double precision. Any value stored as a double requires 64 bits,
formatted as shown in the table below:

Bits Usage

63 Sign (0O = positive, 1 = negative)
62 to 52 Exponent, biased by 1023
51to 0 Fraction F of the number 1.F

Single-Precision Floating Point

MATLAB constructs the single-precision (or single) data type according to IEEE
Standard 754 for single precision. Any value stored as a single requires 32 bits,
formatted as shown in the table below:

Bits Usage
31 Sign (0 = positive, 1 = negative)

4-7

4 Numeric Classes

4-8

Bits Usage
30 to 23 Exponent, biased by 127
22to 0 Fraction T of the number 1.F

Because MATLAB stores numbers of type single using 32 bits, they require less
memory than numbers of type double, which use 64 bits. However, because they are
stored with fewer bits, numbers of type single are represented to less precision than
numbers of type double.

Creating Floating-Point Data

Use double-precision to store values greater than approximately 3.4 x 10°® or less than

approximately -3.4 x 10*®. For numbers that lie between these two limits, you can use
either double- or single-precision, but single requires less memory.

Creating Double-Precision Data

Because the default numeric type for MATLAB is double, you can create a double with
a simple assignment statement:

X = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type double for
the value you just stored in x:

whos x
Name Size Bytes Class
X 1x1 8 double

Use isfloat if you just want to verify that X is a floating-point number. This function
returns logical 1 (true) if the input is a floating-point number, and logical 0 (False)
otherwise:

isfloat(x)
ans =

logical

1

Floating-Point Numbers

You can convert other numeric data, characters or strings, and logical data to double
precision using the MATLAB function, double. This example converts a signed integer
to double-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer
X = double(y) % Convert to double
X =

-5.8932e+11

Creating Single-Precision Data

Because MATLAB stores numeric data as a double by default, you need to use the
single conversion function to create a single-precision number:

X = single(25.783);

The whos function returns the attributes of variable X in a structure. The bytes field of
this structure shows that when X is stored as a single, it requires just 4 bytes compared
with the 8 bytes to store it as a double:

XAttrib = whos("x");
XAttrib.bytes
ans =

4

You can convert other numeric data, characters or strings, and logical data to single
precision using the single function. This example converts a signed integer to single-
precision floating point:

y = int64(-589324077574); % Create a 64-bit integer
x = single(y) % Convert to single
X =

single

-5.8932e+11

Arithmetic Operations on Floating-Point Numbers

This section describes which classes you can use in arithmetic operations with floating-
point numbers.

4 Numeric Classes

4-10

Double-Precision Operations

You can perform basic arithmetic operations with double and any of the following other
classes. When one or more operands is an integer (scalar or array), the double operand
must be a scalar. The result is of type double, except where noted otherwise:

+ single — The result is of type single

+ double

* Int* or uint* — The result has the same data type as the integer operand
+ char

+ logical

This example performs arithmetic on data of types char and double. The result is of
type double:

C = "uppercase” - 32;

class(c)
ans =
double

char(c)
ans =

UPPERCASE
Single-Precision Operations

You can perform basic arithmetic operations with single and any of the following other
classes. The result is always single:

+ single
+ double
* char

+ logical

In this example, 7.5 defaults to type double, and the result is of type single:
x = single([1.32 3.47 5.28]) .* 7.5;

class(x)
ans =
single

Floating-Point Numbers

Largest and Smallest Values for Floating-Point Classes

For the double and single classes, there is a largest and smallest number that you can
represent with that type.

Largest and Smallest Double-Precision Values

The MATLAB functions realmax and realmin return the maximum and minimum
values that you can represent with the double data type:

str = "The range for double is:\n\t%g to %g and\n\t %g to %g";
sprintf(str, -realmax, -realmin, realmin, realmax)

ans =

The range for double is:
-1.79769e+308 to -2.22507e-308 and
2.22507e-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the values of
positive and negative infinity, respectively:

realmax + .0001e+308
ans =
Inf

-realmax - .0001e+308
ans =
-Inf

Largest and Smallest Single-Precision Values

The MATLAB functions realmax and realmin, when called with the argument
"single”, return the maximum and minimum values that you can represent with the
single data type:

str = "The range for single is:\n\t%g to %g and\n\t %g to %g-;
sprintf(str, -realmax("single®), -realmin("single®),
realmin("single®), realmax("single®))

ans =

The range for single is:
-3.40282e+38 to -1.17549e-38 and
1.17549e-38 to 3.40282e+38

4-11

4 Numeric Classes

4-12

Numbers larger than realmax("single®) or smaller than -realmax(“single®") are
assigned the values of positive and negative infinity, respectively:

realmax("single®) + .0001e+038
ans =

single
Inf

-realmax("single®) - .0001e+038
ans =

single

-Inf

Accuracy of Floating-Point Data

If the result of a floating-point arithmetic computation is not as precise as you had
expected, it is likely caused by the limitations of your computer's hardware. Probably,
your result was a little less exact because the hardware had insufficient bits to represent
the result with perfect accuracy; therefore, it truncated the resulting value.

Double-Precision Accuracy

Because there are only a finite number of double-precision numbers, you cannot
represent all numbers in double-precision storage. On any computer, there is a small gap
between each double-precision number and the next larger double-precision number. You
can determine the size of this gap, which limits the precision of your results, using the
eps function. For example, to find the distance between 5 and the next larger double-
precision number, enter

format long

eps(5)
ans =
8.881784197001252e-16

This tells you that there are no double-precision numbers between 5 and 5 + eps(5).
If a double-precision computation returns the answer 5, the result is only accurate to
within eps(5).

Floating-Point Numbers

The value of eps(Xx) depends on x. This example shows that, as X gets larger, so does
eps(x):
eps(50)

ans =
7.105427357601002e-15

If you enter eps with no input argument, MATLAB returns the value of eps(1), the
distance from 1 to the next larger double-precision number.

Single-Precision Accuracy

Similarly, there are gaps between any two single-precision numbers. If X has type
single, eps(X) returns the distance between X and the next larger single-precision
number. For example,

x = single(5);
eps(x)

returns

ans =
single
4_.7684e-07

Note that this result is larger than eps(5). Because there are fewer single-precision
numbers than double-precision numbers, the gaps between the single-precision numbers
are larger than the gaps between double-precision numbers. This means that results in
single-precision arithmetic are less precise than in double-precision arithmetic.

For a number X of type double, eps(single(x)) gives you an upper bound for the
amount that X is rounded when you convert it from double to single. For example,
when you convert the double-precision number 3.14 to single, it is rounded by

double(single(3.14) - 3.14)

ans =
1.0490e-07

The amount that 3.14 is rounded is less than

eps(single(3.14))
ans =

4-13

4 Numeric Classes

4-14

single

2.3842e-07

Avoiding Common Problems with Floating-Point Arithmetic

Almost all operations in MATLAB are performed in double-precision arithmetic
conforming to the IEEE standard 754. Because computers only represent numbers to
a finite precision (double precision calls for 52 mantissa bits), computations sometimes

yield mathematically nonintuitive results. It is important to note that these results are
not bugs in MATLAB.

Use the following examples to help you identify these cases:
Example 1 — Round-Off or What You Get Is Not What You Expect

The decimal number 4/3 is not exactly representable as a binary fraction. For this
reason, the following calculation does not give zero, but rather reveals the quantity eps.

e =1-3*4/3 - 1)

e =
2.2204e-16

Similarly, 0.1 is not exactly representable as a binary number. Thus, you get the
following nonintuitive behavior:

a =
for

a
end
a==1
ans =

=)
1o
N
o
B

logical
0

Note that the order of operations can matter in the computation:

le-16 + 1 - le-16;
le-16 - l1le-16 + 1;

Floating-Point Numbers

b ==c
ans =

logical
0

There are gaps between floating-point numbers. As the numbers get larger, so do the
gaps, as evidenced by:

(2753 + 1) - 2753

ans =
0

Since pi is not really m, it is not surprising that sin(pi) is not exactly zero:
sin(pi)

ans =
1.224646799147353e-16

Example 2 — Catastrophic Cancellation

When subtractions are performed with nearly equal operands, sometimes cancellation
can occur unexpectedly. The following is an example of a cancellation caused by
swamping (loss of precision that makes the addition insignificant).

sgrt(le-16 + 1) - 1

ans =
0

Some functions in MATLAB, such as expml and loglp, may be used to compensate for
the effects of catastrophic cancellation.

Example 3 — Floating-Point Operations and Linear Algebra

Round-off, cancellation, and other traits of floating-point arithmetic combine to produce
startling computations when solving the problems of linear algebra. MATLAB warns
that the following matrix A is ill-conditioned, and therefore the system AX = b may be
sensitive to small perturbations:

A = diag([2 epsD);

4-15

4 Numeric Classes

4-16

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.110223e-16.

These are only a few of the examples showing how IEEE floating-point arithmetic affects
computations in MATLAB. Note that all computations performed in IEEE 754 arithmetic
are affected, this includes applications written in C or FORTRAN, as well as MATLAB.

References

[1] Moler, Cleve. “Floating Points.” MATLAB News and Notes. Fall, 1996.

[2] Moler, Cleve. Numerical Computing with MATLAB. Natick, MA: The MathWorks,
Inc., 2004.

http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf
http://www.mathworks.com/moler/

Complex Numbers

Complex Numbers

Creating Complex Numbers

Complex numbers consist of two separate parts: a real part and an imaginary part. The
basic imaginary unit is equal to the square root of -1. This is represented in MATLAB by
either of two letters: 1 or j.

The following statement shows one way of creating a complex value in MATLAB. The
variable X is assigned a complex number with a real part of 2 and an imaginary part of 3:

X =2 + 31;

Another way to create a complex number is using the complex function. This function
combines two numeric inputs into a complex output, making the first input real and the
second imaginary:

X = rand(3) * 5;
y = rand(3) * -8;
z = complex(X, Yy)
Z =

4.7842 -1.0921i 0.8648 -1.5931i 1.2616 -2.2753i
2.6130 -0.0941i 4.8987 -2.3898i 4.3787 -3.7538i
4.4007 -7.1512i 1.3572 -5.2915i 3.6865 -0.5182i

You can separate a complex number into its real and imaginary parts using the real and
imag functions:

zr = real(2)

zr =
4.7842 0.8648 1.2616
2.6130 4.8987 4.3787
4.4007 1.3572 3.6865

imag(z)

-1.0921 -1.5931 -2.2753
-0.0941 -2.3898 -3.7538
-7.1512 -5.2915 -0.5182

4-17

4 Numeric Classes

Infinity and NaN

4-18

In this section...

“Infinity” on page 4-18
“NaN” on page 4-18

Infinity

MATLAB represents infinity by the special value inf. Infinity results from operations
like division by zero and overflow, which lead to results too large to represent as
conventional floating-point values. MATLAB also provides a function called inf that
returns the IEEE arithmetic representation for positive infinity as a double scalar
value.

Several examples of statements that return positive or negative infinity in MATLAB are
shown here.

X = 1/0 X = 1.e1000
X = X =
Inf Inf
X = exp(1000) x = log(0)
X = X =

Inf -Inf

Use the isinT function to verify that X is positive or negative infinity:
x = log(0);
isinf(xX)

ans =
1

NaN

MATLAB represents values that are not real or complex numbers with a special value
called NaN, which stands for “Not a Number”. Expressions like 0/0 and inf/inf result
in NaN, as do any arithmetic operations involving a NaN:

X = 0/0

Infinity and NaN

NaN

You can also create NaNs by:

X = NaN;

whos X
Name Size Bytes Class
X 1x1 8 double

The NaN function returns one of the IEEE arithmetic representations for NaN as a
double scalar value. The exact bit-wise hexadecimal representation of this NaN value is,

format hex
X = NaN

X =
8000000000000

Always use the 1snan function to verify that the elements in an array are NaN:

isnan(x)
ans =

1

MATLAB preserves the “Not a Number” status of alternate NaN representations and
treats all of the different representations of NaN equivalently. However, in some special
cases (perhaps due to hardware limitations), MATLAB does not preserve the exact bit
pattern of alternate NaN representations throughout an entire calculation, and instead
uses the canonical NaN bit pattern defined above.

Logical Operations on NaN

Because two NaNs are not equal to each other, logical operations involving NaN always
return false, except for a test for inequality, (NaN ~= NaN):

NaN > NaN
ans =
0

4-19

4 Numeric Classes

NaN ~= NaN
ans =
1

4-20

Identifying Numeric Classes

Identifying Numeric Classes

You can check the data type of a variable X using any of these commands.

Command Operation

whos x Display the data type of Xx.

xType = class(x); Assign the data type of X to a variable.

isnumeric(x) Determine if X is a numeric type.

isa(x, "integer") Determine if X is the specified numeric type. (Examples
isa(x, "uint64-) for any integer, unsigned 64-bit integer, any floating point,
isa(x, "float") double precision, and single precision are shown here).

isa(x, "double®)
isa(x, "single®)

isreal (x) Determine if X is real or complex.
isnan(x) Determine if x is Not a Number (NaN).
isinf(x) Determine if X is infinite.
isfinite(X) Determine if X is finite.

4-21

4 Numeric Classes

Display Format for Numeric Values

4-22

In this section...

“Default Display” on page 4-22
“Display Format Examples” on page 4-22

“Setting Numeric Format in a Program” on page 4-23

Default Display

By default, MATLAB displays numeric output as 5-digit scaled, fixed-point values. You
can change the way numeric values are displayed to any of the following:

+ b5-digit scaled fixed point, floating point, or the best of the two

+ 15-digit scaled fixed point, floating point, or the best of the two

* A ratio of small integers

+ Hexadecimal (base 16)

* Bank notation
All available formats are listed on the format reference page.

To change the numeric display setting, use either the Format function or the
Preferences dialog box (accessible from the MATLAB File menu). The format function
changes the display of numeric values for the duration of a single MATLAB session,
while your Preferences settings remain active from one session to the next. These
settings affect only how numbers are displayed, not how MATLAB computes or saves
them.

Display Format Examples

Here are a few examples of the various formats and the output produced from the
following two-element vector X, with components of different magnitudes.

Check the current format setting:

get(0, "“format®)
ans =
short

Display Format for Numeric Values

Set the value for X and display in 5-digit scaled fixed point:

X
X

[4/3 1.2345e-6]

1.3333 0.0000

Set the format to 5-digit floating point:

format short e
X
X =
1.3333e+00 1.2345e-06

Set the format to 15-digit scaled fixed point:

format long
X
X =
1.333333333333333 0.000001234500000

Set the format to "rational " for small integer ratio output:

format rational
X
X =
4/3 1/810045

Set an integer value for X and display it in hexadecimal (base 16) format:

format hex
= uint32(876543210)

X
X
343efcea

Setting Numeric Format in a Program

To temporarily change the numeric format inside a program, get the original format
using the get function and save it in a variable. When you finish working with the new
format, you can restore the original format setting using the set function as shown here:

origFormat = get(0, "format®);
format(“rational ") ;

-- Work in rational format --

4-23

4 Numeric Classes

set(0, "format®, origFormat);

4-24

The Logical Class

* “Find Array Elements That Meet a Condition” on page 5-2
* “Determine if Arrays Are Logical” on page 5-7

+ “Reduce Logical Arrays to Single Value” on page 5-10

* “Truth Table for Logical Operations” on page 5-13

5 The Logical Class

Find Array Elements That Meet a Condition

You can filter the elements of an array by applying one or more conditions to the array.
For instance, if you want to examine only the even elements in a matrix, find the location
of all Os in a multidimensional array, or replace NaN values in a discrete set of data. You
can perform these tasks using a combination of the relational and logical operators. The
relational operators (>, <, >=, <=, ==, ~=)impose conditions on the array, and you
can apply multiple conditions by connecting them with the logical operators and, or, and
not, respectively denoted by &, |, and ~.

In this section...

“Apply a Single Condition” on page 5-2
“Apply Multiple Conditions” on page 5-4

“Replace Values that Meet a Condition” on page 5-5

Apply a Single Condition

To apply a single condition, start by creating a 5-by-5 matrix, A, that contains random
integers between 1 and 15.

rng default
A = randi(15,5)

A =
13 2 3 3 10
14 5 15 7 1
2 9 15 14 13
14 15 8 12 15
10 15 13 15 11

Use the relational less than operator, <, to determine which elements of A are less than 9.
Store the result in B.

B=A<9

B =
0 1 1 1 0
0 1 0 1 1
1 0 0 0 0

Find Array Elements That Meet a Condition

0 0 1 0 0
0 0 0 0 0

The result is a logical matrix. Each value in B represents a logical 1 (true) or logical O
(False) state to indicate whether the corresponding element of A fulfills the condition A
< 9. For example, A(1,1) is 13, so B(1,1) is logical O (False). However, A(1,2) is 2,
so B(1,2) is logical 1 (true).

Although B contains information about which elements in A are less than 9, it doesn’t tell
you what their values are. Rather than comparing the two matrices element by element,
use B to index into A.

A(B)

ans =

P ~NWOooWONDN

The result is a column vector of the elements in A that are less than 9. Since B is a logical
matrix, this operation is called logical indexing. In this case, the logical array being used
as an index is the same size as the other array, but this is not a requirement. For more
information, see “Using Logicals in Array Indexing”.

Some problems require information about the locations of the array elements that meet
a condition rather than their actual values. In this example, use the Find function to
locate all of the elements in A less than 9.

find(A < 9)

5-3

5 The Logical Class

5-4

17
22

The result is a column vector of linear indices. Each index describes the location of an
element in A that is less than 9, so in practice A(l) returns the same result as A(B). The
difference is that A(B) uses logical indexing, whereas A(l) uses linear indexing.

Apply Multiple Conditions

You can use the logical and, or, and not operators to apply any number of conditions to
an array; the number of conditions is not limited to one or two.

First, use the logical and operator, denoted &, to specify two conditions: the elements
must be less than 9 AND greater than 2. Specify the conditions as a logical index to view
the elements that satisfy both conditions.

A(A<9 & A>2)

ans =

~N W oo w ol

The result is a list of the elements in A that satisfy both conditions. Be sure to specify
each condition with a separate statement connected by a logical operator. For example,
you cannot specify the conditions above by A(2<A<9), since it evaluates to A(2<A |
A<9).

Next, find the elements in A that are less than 9 AND even numbered.
A(A<9 & ~mod(A,2))
ans =

2
2
8

The result is a list of all even elements in A that are less than 9. The use of the logical
NOT operator, ~, converts the matrix mod(A, 2) into a logical matrix, with a value of
logical 1 (true) located where an element is evenly divisible by 2.

Find Array Elements That Meet a Condition

Finally, find the elements in A that are less than 9 AND even numbered AND not equal
to 2.

A(A<9 & ~mod(A,2) & A~=2)
ans =
8

The result, 8, is even, less than 9, and not equal to 2. It is the only element in A that
satisfies all three conditions.

Use the Find function to get the index of the 8 element that satisfies the conditions.
Find(A<9 & ~mod(A,2) & A~=2)
ans =

14

The result indicates that A(14) = 8.

Replace Values that Meet a Condition

Sometimes it is useful to simultaneously change the values of several existing array
elements. Use logical indexing with a simple assignment statement to replace the values
in an array that meet a condition.

Replace all values in A that are greater than 10 with the number 10.

A(A>10) = 10

A =
10 2 3 3 10
10 5 10 7 1
2 9 10 10 10
10 10 8 10 10
10 10 10 10 10

A now has a maximum value of 10.

Replace all values in A that are not equal to 10 with a NaN value.

5-5

5 The Logical Class

5-6

A(A~=10) = NaN
A =

10 NaN NaN NaN 10
10 NaN 10 NaN NaN
NaN NaN 10 10 10
10 10 NaN 10 10
10 10 10 10 10

The resulting matrix has element values of 10 or NaN.

Replace all of the NaN values in A with zeros and apply the logical NOT operator, ~A.

A(isnan(A)) = 0;

C=-A

C =
0 1 1 1 0
0 1 0 1 1
1 1 0 0 0
0 0 1 0 0
0 0 0 0 0

The resulting matrix has values of logical 1 (true) in place of the NaN values, and logical
0 (False) in place of the 10s. The logical NOT operation, ~A, converts the numeric array
into a logical array such that A&C returns a matrix of logical O (False) values and A|C
returns a matrix of logical 1 (true) values.

See Also

and | find | isnan | Logical Operators: Short Circuit | nan | not | or | xor

Determine if Arrays Are Logical

Determine if Arrays Are Logical

To determine whether an array is logical, you can test the entire array or each element
individually. This is useful when you want to confirm the output data type of a function.

This page shows several ways to determine if an array is logical.

In this section...

“Identify Logical Matrix” on page 5-7
“Test an Entire Array” on page 5-7
“Test Each Array Element” on page 5-8

“Summary Table” on page 5-9

Identify Logical Matrix
Create a 3-by-6 matrix and locate all elements greater than 0.5.

A = gallery(“uniformdata®,[3,6],0) > 0.5

A =
1 0 0 0 1 0
0 1 0 1 1 1
1 1 1 1 0 1

The result, A, is a 3-by-6 logical matrix.

Use the whos function to confirm the size, byte count, and class (or data type) of the

matrix, A.

whos A

Name Size Bytes Class Attributes
A 3x6 18 logical

The result confirms that A is a 3-by-6 logical matrix.

Test an Entire Array

Use the islogical function to test whether A is logical.

5-7

5 The Logical Class

islogical (A)
ans =
1
The result is logical 1 (true).
Use the class function to display a string with the class name of A.
class(A)
ans =
logical

The result confirms that A is logical.

Test Each Array Element

Create a cell array, C, and use the "1slogical " option of the cel 1fun function to
identify which cells contain logical values.

Cc = {1, 0, true, false, pi, A};
cellfun(islogical®,C)

ans =
0 0 1 1 0 1

The result is a logical array of the same size as C.

To test each element in a numeric matrix, use the arrayfun function.

arrayfun(@islogical ,A)

ans =
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

The result is a matrix of logical values of the same size as A. arrayfun(@islogical ,A)
always returns a matrix of all logical 1 (true) or logical O (False) values.

5-8

Determine if Arrays Are Logical

Summary Table

Use these MATLAB functions to determine if an array is logical.

Function Syntax

Output Size

Description

whos(A)

N/A

Displays the name, size,
storage bytes, class, and
attributes of variable A.

islogical (A)

scalar

Returns logical 1 (true) if A
1s a logical array; otherwise,
it returns logical O (False).
The result is the same as

using isa(A, "logical ™).

isa(A, "logical ™)

scalar

Returns logical 1 (true) if A
is a logical array; otherwise,
it returns logical O (False).
The result is the same as
using islogical (A).

class(A)

single string

Returns a string with the
name of the class of variable
A.

cellfun("islogical®,A)

Array of the same size as A

For cell arrays only. Returns
logical 1 (true) for each cell
that contains a logical array;
otherwise, it returns logical O
(False).

arrayfun(@islogical,A)

Array of the same size as A

Returns an array of logical 1
(true) values if A is logical;
otherwise, it returns an
array of logical O (False)
values.

See Also

arrayfun | cellfun | class | isa | islogical | whos

5-9

5 The Logical Class

Reduce Logical Arrays to Single Value

5-10

Sometimes the result of a calculation produces an entire numeric or logical array when
you need only a single logical true or false value. In this case, use the any or all
functions to reduce the array to a single scalar logical for further computations.

The any and al I functions are natural extensions of the logical | (OR) and & (AND)
operators, respectively. However, rather than comparing just two elements, the any
and al I functions compare all of the elements in a particular dimension of an array.

It is as if all of those elements are connected by & or | operators and the any or all
functions evaluate the resulting long logical expression(s). Therefore, unlike the core
logical operators, the any and al I functions reduce the size of the array dimension that
they operate on so that it has size 1. This enables the reduction of many logical values
into a single logical condition.

First, create a matrix, A, that contains random integers between 1 and 25.

rng(0)

A = randi(25,5)

A =
21 3 4 4 17
23 7 25 11 1

4 14 24 23 22
23 24 13 20 24
16 25 21 24 17

Next, use the mod function along with the logical NOT operator, ~, to determine which
elements in A are even.

A = ~mod(A,2)

A =

RPORFrR OO
OFR, P, OO
OO0ORrROR
PR OOR
OrRrRFrR OO

The resulting matrices have values of logical 1 (€rue) where an element is even, and
logical O (False) where an element is odd.

Reduce Logical Arrays to Single Value

Since the any and al I functions reduce the dimension that they operate on to size 1,

it normally takes two applications of one of the functions to reduce a 2-D matrix into a
single logical condition, such as any(any(A)). However, if you use the notation A(:) to
regard all of the elements of A as a single column vector, you can use any(A(:)) to get
the same logical information without nesting the function calls.

Determine if any elements in A are even.

any(A(:))

ans =
1
The result 1s logical 1 (true).

You can perform logical and relational comparisons within the function call to any or
all. This makes it easy to quickly test an array for a variety of properties.

Determine if all elements in A are odd.

all(~A(2))

ans =
0
The result is logical O (False).

Determine whether any main or super diagonal elements in A are even.

any(diag(A) | diag(A,1))

Error using |
Inputs must have the same size.

MATLAB returns an error since the vectors returned by diag(A) and diag(A, 1) are
not the same size.

To reduce each diagonal to a single scalar logical condition and allow logical short-
circuiting, use the any function on each side of the short-circuit OR operator, | |.

any(diag(A)) |l any(diag(A,1))

ans =

5-11

5 The Logical Class

1

The result is logical 1 (true). It no longer matters that diag(A) and diag(A,1) are not
the same size.

See Also

all | and | any | Logical Operators: Short Circuit | or | xor

5-12

Truth Table for Logical Operations

Truth Table for Logical Operations

The following reference table shows the results of applying the binary logical operators

to a series of logical 1 (true) and logical O (False) scalar pairs. To calculate NAND,
NOR or XNOR logical operations, simply apply the logical NOT operator to the result of a
logical AND, OR, or XOR operation, respectively.

Inputs A and B and or xor not
A&B Al B xor(A,B) ~A
0 0] 0] 0 1
0 1 0 1 1 1
1 0 0 1 1 0]
1 1 1 1 0 0
See Also

and | Logical Operators: Short Circuit | not | or | xor

5-13

Characters and Strings

“Represent Text with Character and String Arrays” on page 6-2
“Create Character Arrays” on page 6-5

“Create String Arrays” on page 6-10

“Cell Arrays of Character Vectors” on page 6-19

“Analyze Text Data with String Arrays” on page 6-22

“Test for Empty Strings and Missing Values” on page 6-29
“Formatting Text” on page 6-34

“Compare Text” on page 6-45

“Search and Replace Text” on page 6-51

“Convert from Numeric Values to Character Array” on page 6-58
“Convert from Character Arrays to Numeric Values” on page 6-60

“Function Summary” on page 6-63

6 Characters and Strings

Represent Text with Character and String Arrays

There are two ways to represent text in MATLAB®. You can store text in character
arrays. A typical use is to store short pieces of text as character vectors. And starting in
Release 2016b, you can also store multiple pieces of text in string arrays. String arrays
provide a set of functions for working with text as data.

Represent Text with Character Vectors

Create a character vector by enclosing a sequence of characters in single quotation
marks. MATLAB® displays character vectors without any quotation marks.

chr = "Hello, world”

chr =
"Hello, world"

Character vectors store characters as 1-by-N vectors. You can index directly into
character vectors to get characters, or to change them.

chr(1:5)

ans =
"Hello"

chr(1:5) = “HELLO";
chr

chr =
"HELLO, world®

You can work with character vectors just as you would with arrays of any other type. For
example, you can concatenate character vectors.

street = "123 Maple St.";
city = "Lakeview, MA 01234";
fullAddress = [street ", " city]

fullAddress =
"123 Maple St., Lakeview, MA 01234*

Typical uses for character vectors include specifying file names, plot labels, or input
arguments for functions. For more information on character arrays, see “Create
Character Arrays”.

Represent Text with Character and String Arrays

Represent Text with String Arrays

You also can store text in string arrays. Each element of a string array stores a 1-by-N
character vector.

Starting in R2017a, you can create strings using double quotes. MATLAB® always
displays strings with double quotes.

str = "Welcome, friend"

str =
"Welcome, friend"

As an alternative, you can convert a character vector to a string using the string
function.

chr = "Hello, world";
str = string(chr)
str =

"Hello, world"

str is a 1-by-1 string, or string scalar. To find the number of characters in a string, use
the strilength function.

whos str
Name Size Bytes Class Attributes
str 1x1 150 string
strlength(str)
ans = 12

You can store multiple pieces of text in a string array. Each element of the array can
contain a string of a different size.

str = ["Mercury","Gemini","Apollo"; ...
"Skylab",""Skylab B","1SS"]

str = 2x3 string array
"Mercury" “Gemini™ "Apollo™
"'Skylab" "Skylab B" 1SS

6 Characters and Strings

str is a 2-by-3 string array. You can find the lengths of the strings with the strlength
function.

whos str
Name Size Bytes Class Attributes
str 2x3 460 string
L = strlength(str)
L =
7 6 6
6 8 3

As an alternative, you also can convert a cell array of character vectors to a string array
using the string function.

C = {"Mercury®","Venus", "Earth"};
str = string(C)

str = 1x3 string array
“"Mercury" "Venus" "Earth"

Use string arrays to store and work with multiple pieces of text. You can find and
replace substrings, sort and reshape string arrays, and work with text as data. For more
information on string arrays, see “Create String Arrays”.

See Also

cellstr | char | string | striength

Related Examples

. “Create Character Arrays” on page 6-5

. “Create String Arrays” on page 6-10

. “Analyze Text Data with String Arrays” on page 6-22
. “Cell Arrays of Character Vectors” on page 6-19

Create Character Arrays

Create Character Arrays

In this section...

“Create Character Vector” on page 6-5

“Create Rectangular Character Array” on page 6-6
“Identify Characters” on page 6-7

“Work with Space Characters” on page 6-8
“Expand Character Arrays” on page 6-9

Create Character Vector

Create a character vector by enclosing a sequence of characters in single quotation marks.

chr = "Hello, world";

Character vectors are 1-by-n arrays of type char. In computer programming, string is a
frequently-used term for a 1-by-n array of characters.

whos chr
Name Size Bytes Class Attributes
chr 1x12 24 char

If the text contains a single quotation mark, include two quotation marks when assigning
the character vector.

newChr = "You®""re right”
newChr =
You"re right
Functions such as uintl6 convert characters to their numeric codes.
chrNumeric = uintl6(chr)
chrNumeric =
72 101 108 108 111 44 32 119 111 114 108 100

The char function converts the integer vector back to characters.

6 Characters and Strings

chrAlpha = char([72 101 108 108 111 44 32 119 111 114 108 100])

chrAlpha

Hello, world

Create Rectangular Character Array

Character arrays are m-by-n arrays of characters, where m is not always 1. You can
join two or more character vectors together to create a character array. This is called
concatenation and is explained for numeric arrays in the section “Concatenating
Matrices”. As with numeric arrays, you can combine character arrays vertically or
horizontally to create a new character array.

Alternatively, combine character vectors into a cell array. Cell arrays are flexible
containers that allow you to easily combine character vectors of varying length.

Combine Character Vectors Vertically

To combine character vectors into a two-dimensional character array, use square
brackets or the char function.

Apply the MATLAB concatenation operator, []. Separate each row with a semicolon
(;). Each row must contain the same number of characters. For example, combine
three character vectors of equal length:

devTitle = ["Thomas R. Lee";
"Sr. Developer®;
"SFTware Corp."];

If the character vectors have different lengths, pad with space characters as needed.
For example:

mgrTitle = ["Harold A. Jorgensen -
"Assistant Project Manager”®;
"SFTware Corp. “1;

Call the char function. If the character vectors have different lengths, char pads
the shorter vectors with trailing blanks so that each row has the same number of
characters.

mgrTitle = char("Harold A. Jorgensen”,
"Assistant Project Manager®, "SFTware Corp.");

Create Character Arrays

The char function creates a 3-by-25 character array mgrTitle.
Combining Character Vectors Horizontally

To combine character vectors into a single row vector, use square brackets or the strcat
function.

* Apply the MATLAB concatenation operator, []. Separate the input character vectors
with a comma or a space. This method preserves any trailing spaces in the input

arrays.
name = "Thomas R. Lee";
title = "Sr. Developer”;

company = “"SFTware Corp.";

fullName = [name ", " title ", " company]
MATLAB returns

fullName =

Thomas R. Lee, Sr. Developer, SFTware Corp.

+ Call the concatenation function, strcat. This method removes trailing spaces in
the inputs. For example, combine character vectors to create a hypothetical email

address.

name = "myname "
domain = "mydomain °;
ext = "com "3

address = strcat(name, "@", domain, ".", ext)

MATLAB returns

address =

myname@mydomain.com

Identify Characters

Use any of the following functions to identify a character array, or certain characters in a
character array.

6 Characters and Strings

Function Description

ischar Determine whether the input is a character array
isletter Find all alphabetic letters in the input character array
isspace Find all space characters in the input character array
isstrprop Find all characters of a specific category

Find the spaces in a character vector.

chr = "Find the space characters in this character vector®;

% [| [| I

% 5 9 15 26 29 34 44
find(isspace(chr))
ans =

5 9 15 26 29 34 44

Work with Space Characters

The blanks function creates a character vector of space characters. Create a vector of 15
space characters.

chr = blanks(15)

chr =

To make the example more useful, append a | " character to the beginning and end of
the blank character vector so that you can see the output.

[.I. chr .I.]
ans =

Insert a few nonspace characters in the middle of the blank character vector.

chr(6:10) = "AAAAA";
17 chr *|°]

Create Character Arrays

ans =
| AAAAA |

You can justify the positioning of these characters to the left or right using the strjust
function:

chrLeft = strjust(chr, left");
[7]" chrLeft "|"]

ans =
| AAAAA |

chrRight = strjust(chr, “right”);
[]" chrRight "|*]

ans =
| AAAAA|
Remove all trailing space characters with deblank:

chrDeblank = deblank(chr);
["]" chrDeblank "|"]

ans =
I AAAAA|
Remove all leading and trailing spaces with strtrim:

chrTrim = strtrim(chr);
[*°]° chrTrim "|"]

ans =

|AAAAA]

Expand Character Arrays

Generally, MathWorks does not recommend expanding the size of an existing character
array by assigning additional characters to indices beyond the bounds of the array such
that part of the array becomes padded with zeros.

6 Characters and Strings

Create String Arrays

6-10

String arrays were introduced in R2016b. String arrays store pieces of text and provide
a set of functions for working with text as data. You can index into, reshape, and
concatenate strings arrays just as you can with arrays of any other type. You also can
access the characters in a string and append text to strings using the plus operator. To
rearrange strings within a string array, use functions such as split, join, and sort.

Create String Arrays from Variables

MATLAB® provides string arrays to store pieces of text. Each element of a string array
contains a 1-by-N character vector.

Starting in R2017a, you can create a string using double quotes.
str = "Hello, world”

str =
"Hello, world"

As an alternative, you can convert a character vector to a string using the string
function. chr is a 1-by-17 character vector. Str is a 1-by-1 string that has the same text
as the character vector.

chr = "Greetings, friend”

chr =
"Greetings, friend”

str string(chr)

str =
"Greetings, friend"”

Create a string array using the [] operator. str is a 2-by-3 string array that contains six
strings.

str = ["Mercury","Gemini","Apollo";
"Skylab",""Skylab B","1SS"]

str = 2x3 string array
"Mercury" "Gemini"' "Apollo"
""Skylab" "Skylab B" 1SS

Create String Arrays

Find the length of each string in str with the strlength function. Use strilength, not
length, to determine the number of characters in strings.

L = strlength(str)
L =
7 6 6
6 8 3

As an alternative, you can convert a cell array of character vectors to a string array using
the string function. MATLAB® displays strings in string arrays with double quotes,
and displays characters vectors in cell arrays with single quotes.

C = {"Mercury®","Venus","Earth"}
C = 1x3 cell array

"Mercury*® "Venus* "Earth*
str = string(C)

str = 1x3 string array
"Mercury" "Venus" "Earth"

In addition to character vectors, you can convert numeric, datetime, duration, and
categorical values to strings using the string function.

Convert a numeric array to a string array.

X = [5 10 20 3.1416];
string(X)

ans = 1x4 string array
"5t 10" 20" "3.1416"

Convert a datetime value to a string.

d = datetime("now");
string(d)

ans =

6-11

6 Characters and Strings

6-12

"'24-Feb-2017 13:46:56"

Also, you can read text from files into string arrays using the readtable, textscan,
and fscanf functions.

Create Empty and Missing Strings

String arrays can contain both empty and missing values. An empty string contains

zero characters. When you display an empty string, the result is a pair of double quotes
with nothing between them (*''"). The missing string is the string equivalent to NaN for
numeric arrays. It indicates where a string array has missing values. When you display a
missing string, the result is <missing>, with no quotation marks.

Create an empty string array using the strings function. When you call strings with
no arguments, it returns an empty string. Note that the size of str is 1-by-1, not 0-by-O0.
However, str contains zero characters.

strings

str

str =

Create an empty character vector using single quotes. Note that the size of chr is 0-by-0.
chr = °*
chr =

0x0 empty char array

Create a string array where every element is an empty string. You can preallocate a
string array with the strings function.

str = strings(2,3)

str = 2x3 string array

To create a missing string, convert a missing value using the string function. The
missing string displays as <missing>.

str = string(missing)

Create String Arrays

str =
<missing>

You can create a string array with both empty and missing strings. Use the ismissing
function to determine which elements are strings with missing values. Note that the
empty string is not a missing string.

str(l)
str(2)
str(3)

"Gémini";
string(missing)

str = 1x3 string array
"Gemini™ <missing>
ismissing(str)

ans = 1x3 logical array
0 0 1

Compare a missing string to another string. The result is always O (False), even when
you compare a missing string to another missing string.

str = string(missing);
str == "Gemini”
ans = logical

0
str == string(missing)
ans = logical

0

Access Elements of String Array

String arrays support array operations such as indexing and reshaping. Use array
indexing to access the first row of str and all of the columns.

str = ["Mercury","Gemini","Apollo";

"Skylab",""Skylab B","1SS"];
str(4,:)

6-13

6 Characters and Strings

6-14

ans = 1x3 string array
"Mercury" “Gemini™ "Apollo™

Access the second element in the second row of str.
str(2,2)

ans =
“Skylab B"

Assign a new string outside the bounds of str. MATLAB® expands the array and fills
unallocated elements with missing values.

str(3,4) = "Mir"

str = 3x4 string array

"Mercury" “Gemini™ “Apollo™ <missing>
"Skylab™ "Skylab B™ 1SS <missing>
<missing> <missing> <missing> UMErT

Access Characters Within Strings

You can index into a string array using curly braces, {}, to access characters directly.
Use curly braces when you need to access and modify characters within a string element.
Indexing with curly braces provides compatibility for code that could work with either
string arrays or cell arrays of character vectors. But whenever possible, use string
functions to work with the characters in strings.

Access the second element in the second row with curly braces. chr is a character vector,
not a string.

str = [""Mercury',”Gemini","Apollo™;
"Skylab",""Skylab B","1SS"];
chr = str{2,2}

chr =
"Skylab B*

Access the character vector and return the first three characters.
str{2,2}(1:3)

ans =

Create String Arrays

"Sky'"

Find the space characters in a string and replace them with dashes. Use the isspace
function to inspect individual characters within the string. isspace returns a logical
vector that contains a true value wherever there is a space character. Finally, display the
modified string element, str(2, 2).

tf = isspace(str{2,2})

tf = 1x8 logical array

0 0 0 0 0 0 1 0
str{2,2}(tf) = "-";
str(2,2)
ans =
"Skylab-B"

Note that in this case, you can also replace spaces using the replace function, without
resorting to curly brace indexing.

replace(str(2,2),” ","-")

ans =
“Skylab-B"

Concatenate Strings into String Array

Concatenate strings into a string array just as you would concatenate arrays of any other
kind.

Concatenate two string arrays using square brackets, [].

strl [*Mercury',"Gemini","Apoll10'"];
str2 ['Skylab™,"Skylab B'","1SS"];
str = [strl str2]

str = 1x6 string array
"Mercury" “Gemini*' “"Apollo* "Skylab** "Skylab B "ISS™

Transpose strl and str2. Concatenate them and then vertically concatenate column
headings onto the string array. When you concatenate character vectors into a string
array, the character vectors are automatically converted to strings.

6-15

6 Characters and Strings

strl = strl-;

str2 = str2-;

str = [strl str2];

str = [["'Mission:","Station:""] ; str]

str = 4x2 string array

"Mission:™ ""Station:™

"Mercury" "Skylab™

“Gemini* "Skylab B™

“Apollo™ 1SS
Append Text to Strings

To append text to strings, use the plus operator, +. The plus operator appends text to
strings but does not change the size of a string array.

Append a last name to an array of names. If you append a character vector to strings,
then the character vector is automatically converted to a string.

names
names

= ["Mary";"John";"Elizabeth";"Paul';"Ann""];
= names + " Smith"
names = 5x1 string array

"Mary Smith"

*John Smith"

"Elizabeth Smith™

"Paul Smith"

"Ann Smith"

Append different last names. You can append text to a string array from a string array or
from a cell array of character vectors. When you add nonscalar arrays, they must be the
same size.

names = [""Mary';"John";"Elizabeth";"Paul';"Ann"];
lastnames = [""Jones";"Adams;"Young';"'Burns';"Spencer'];
names = names + " " + lastnames

names = 5x1 string array
“"Mary Jones"
"John Adams™
"Elizabeth Young"
"Paul Burns”
"Ann Spencer"

6-16

Create String Arrays

Append a missing string. When you append a missing string with the plus operator, the
output is a missing string.

strl = "Jones';

str2 = string(missing);
strl + str2

ans =

<missing>
Split, Join, and Sort String Array

MATLAB® provides a rich set of functions to work with string arrays. For example, you
can use the split, join, and sort functions to rearrange the string array names so
that the names are in alphabetical order by last name.

Split names on the space characters. Splitting changes names from a 5-by-1 string array
to a 5-by-2 array.

names
names

['Mary Jones';""John Adams";"Elizabeth Young'";"Paul Burns';"Ann Spencer'];
split(names)

names = 5x2 string array

"Mary" "*Jones"
"John"" ""Adams"
"Elizabeth" "Young"
"Paul" "Burns"
"Ann"' ""*Spencer"’

Switch the columns of names so that the last names are in the first column. Add a comma
after each last name.

names = [names(:,2) names(:,1)];
names(:,1) = names(:,1) + *,°

names = 5x2 string array

"Jones, " "Mary"
"Adams, " "John"*
"Young,"' "Elizabeth"
"Burns, " "Paul"
"Spencer,"’ "Ann"'

6-17

6 Characters and Strings

Join the last and first names. The join function places a space character between the
strings it joins. After the join, names is a 5-by-1 string array.

names = join(names)

names = 5x1 string array

""Jones, Mary"
""Adams, John"
"Young, Elizabeth"

"Burns, Paul™
""Spencer, Ann"'

Sort the elements of names so that they are in alphabetical order.

names = sort(names)

names = 5x1 string array

"Adams, John"
"Burns, Paul"
"Jones, Mary"
"Spencer, Ann"'
"Young, Elizabeth"

See Also

ismissing | isspace | join | plus | sort | split | string | strings |
strilength

Related Examples

6-18

“Analyze Text Data with String Arrays” on page 6-22
“Search and Replace Text” on page 6-51

“Compare Text” on page 6-45

“Test for Empty Strings and Missing Values” on page 6-29

Cell Arrays of Character Vectors

Cell Arrays of Character Vectors

In this section...

“Convert to Cell Array of Character Vectors” on page 6-19

“Functions for Cell Arrays of Character Vectors” on page 6-20

Convert to Cell Array of Character Vectors

When you create character arrays from character vectors, all the vectors must have

the same length. This often means that you have to pad blanks at the end of character
vectors to equalize their length. However, another type of MATLAB array, the cell array,
can hold different sizes and types of data in an array without padding. A cell array of
character vectors is a cell array where every cell contains a character vector. Cell array
of strings is another frequently-used term for such a cell array. Cell arrays of character
vectors provide a more flexible way to store character vectors of varying lengths.

Convert a character array to a cell array of character vectors. data is padded with
spaces so that each row has an equal number of characters. Use cel Istr to convert the
character array.

data = ["Allison Jones”;"Development ~;"Phoenix "1;
celldata = cellstr(data)

celldata =
"Allison Jones”

"Development*
"Phoenix”

datais a 3-by-13 character array, while cel ldata is a 3-by-1 cell array of character
vectors. cel Istr also strips the blank spaces at the ends of the rows of data.

The iscellstr function determines if the input argument is a cell array of character
vectors. It returns a logical 1 (true) in the case of cel ldata:

iscellstr(celldata)

ans =

6-19

6 Characters and Strings

Use char to convert back to a padded character array.
chr = char(celldata)

chr =

Allison Jones

Development

Phoenix

length(chr(3,:))

ans =

13

For more information on cell arrays, see “Access Data in Cell Array” on page 12-5.

Functions for Cell Arrays of Character Vectors

This table describes the MATLAB functions for working with cell arrays of character

vectors.

Function Description

cellstr Convert a character array to a cell array of character vectors.
char Convert a cell array of character vectors to a character array.
deblank Remove trailing blanks from a character array.

iscellstr Return true for a cell array of character arrays.

sort Sort elements in ascending or descending order.

strcat Concatenate character arrays or cell arrays of character arrays.
strcmp Compare character arrays or cell arrays of character arrays.

You can also use the following set functions with cell arrays of character vectors.

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.

setdiff Return the set difference of two vectors.

6-20

Cell Arrays of Character Vectors

setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.
unique Set the unique elements of a vector.

6-21

6 Characters and Strings

Analyze Text Data with String Arrays

6-22

This example shows how to store text from a file as a string array, sort the words by their
frequency, plot the result, and collect basic statistics for the words found in the file.

Import Text File to String Array

Read text from Shakespeare's Sonnets with the fileread function. fileread returns
the text as a 1-by-100266 character vector.

sonnets = Ffileread(fullfile(matlabroot, "examples®, "matlab®, "sonnets.txt"));
sonnets(1:35)

ans =
"THE SONNETS
by William Shakespeare*

Convert the text to a string using the string function. Then, split it on newline
characters using the splitlines function. sonnets becomes a 2625-by-1 string

array, where each string contains one line from the poems. Display the first five lines of
sonnets.

sonnets = string(sonnets);
sonnets = splitlines(sonnets);
sonnets(1:5)

ans = 5x1 string array
"THE SONNETS"

"by William Shakespeare"

Clean String Array

To calculate the frequency of the words in sonnets, first clean it by removing empty
strings and punctuation marks. Then reshape it into a string array that contains
individual words as elements.

Remove the strings with zero characters (') from the string array. Compare each
element of sonnets to """, the empty string. Starting in R2017a, you can create strings,
including an empty string, using double quotes. TF is a logical vector that contains a true

Analyze Text Data with String Arrays

value wherever sonnets contains a string with zero characters. Index into sonnets
with TF and delete all strings with zero characters.

TF = (sonnets == """);
sonnets(TF) = [1;
sonnets(1:10)

ans = 10x1 string array
"THE SONNETS"
by William Shakespeare™
T
From fairest creatures we desire increase,”
" That thereby beauty®s rose might never die,"
" But as the riper should by time decease,"
" His tender heir might bear his memory:*
" But thou, contracted to thine own bright eyes,"
" Feed"st thy light®"s flame with self-substantial fuel,”
" Making a famine where abundance lies,"

Replace some punctuation marks with space characters. For example, replace periods,
commas, and semi-colons. Keep apostrophes because they can be part of some words in
the Sonnets, such as light'’s.

p = [, e,

sonnets = replace(sonnets,p,’);

sonnets(1:10)

ans = 10x1 string array
"THE SONNETS"
"by William Shakespeare™
TR
" From fairest creatures we desire increase
" That thereby beauty"s rose might never die
" But as the riper should by time decease "'
" His tender heir might bear his memory **
" But thou contracted to thine own bright eyes
" Feed®"st thy light®"s flame with self-substantial fuel "
' Making a famine where abundance lies "

Strip leading and trailing space characters from each element of sonnets.

sonnets = strip(sonnets);
sonnets(1:10)

6-23

6 Characters and Strings

ans = 10x1 string array

"THE SONNETS™
"by William Shakespeare™
e
"From fairest creatures we desire increase"
"That thereby beauty®s rose might never die"
"But as the riper should by time decease"
"His tender heir might bear his memory"
"But thou contracted to thine own bright eyes"
"Feed"st thy light"s flame with self-substantial fuel™
"Making a famine where abundance lies"

Split sonnets into a string array whose elements contain individual words. The space
characters in each element separate the words, but the elements have different numbers
of spaces, and therefore different numbers of words. However, the split function
requires that every element of a string array must be divisible into an equal number of
new elements. One way to work with this requirement is to write a for-loop and split each
string element individually. In this case, another way is to join all the string elements
into one string, and then split that string on the space characters.

Join all the string elements into a 1-by-1 string. Then split on the space characters.
sonnetsis a 17711-by-1 string array. Each element contains one word.

sonnets = join(sonnets);
sonnets = split(sonnets);
sonnets(1:10)

ans = 10x1 string array
"THE™
""'SONNETS"™
"y
“"William"
""Shakespeare"™
e
"From"
"fairest”
"creatures"
e

Sort Words Based on Frequency

Find the unique words in sonnets. Count them and sort them based on their frequency.

6-24

Analyze Text Data with String Arrays

To count words that differ only by case as the same word, convert sonnets to lowercase.
For example, The and the count as the same word. Find the unique words using the
unique function. Then, count the number of times each unique word occurs using the
histcounts function.

sonnets = lower(sonnets);

[words,~, idx] = unique(sonnets);
numOccurrences = histcounts(idx,numel(words));

Sort the words in sonnets by number of occurrences, from most to least common.

[rankOfOccurrences, ranklndex] = sort(numOccurrences, "descend”);
wordsByFrequency = words(ranklndex);

Plot Word Frequency

Plot the occurrences of words in the Sonnets from the most to least common words. Zipf's
Law states that the distribution of occurrences of words in a large body text follows a
power-law distribution.

loglog(rankOfOccurrences);

xlabel ("Rank of word (most to least common)*®);
ylabel (*Number of Occurrences®);

6-25

6 Characters and Strings

"'|D3: T T T T — T Tl T — T T
T —,
@ \
c 10°F \ E
o
5 .
9 \
O
b=
]
£
1k i
£ 10 1
=
101:} il " " PR R | " " s a aaal
10° 10! 102 10°

Rank of word {most to least common)

Display the ten most common words in the Sonnets.
wordsByFrequency(1:10)

ans = 10x1 string array
"and"
""the"
"o
“my"
nof
e
vine
"that"
“thy"

6-26

Analyze Text Data with String Arrays

"thou™

Collect Basic Statistics in Table

Calculate the total number of occurrences of each word in sonnets. Calculate the
number of occurrences as a percentage of the total number of words, and calculate
the cumulative percentage from most to least common. Write the words and the basic
statistics for them to a table.

numOccurrences = numOccurrences(rankindex);

numOccurrences = numOccurrences”;

numWords = length(sonnets);

T = table;

T.Words = wordsByFrequency;

T.NumOccurrences = numOccurrences;

T.PercentOfText = numOccurrences / numWords * 100.0;
T.CumulativePercentOfText = cumsum(numOccurrences) / numWords * 100.0;

Display the statistics for the ten most common words.

T(1:10,:)

ans = 10x4 table
Words NumOccurrences PercentOfText CumulativePercentOfText
"and" 490 2.7666 2.7666
"the" 436 2.4617 5.2284
"to" 409 2.3093 7.5377
my** 371 2.0947 9.6324
"of"" 370 2.0891 11.722
it 341 1.9254 13.647
"in" 321 1.8124 15.459
"that" 320 1.8068 17.266
"thy" 280 1.5809 18.847
"thou"" 233 1.3156 20.163

6-27

6 Characters and Strings

The most common word in the Sonnets, and, occurs 490 times. Together, the ten most
common words account for 20.163% of the text.

See Also

histcounts | join | lower | replace | sort | split | splitlines | string |
strip | table | unique

Related Examples

. “Create String Arrays” on page 6-10

. “Search and Replace Text” on page 6-51

. “Compare Text” on page 6-45

. “Test for Empty Strings and Missing Values” on page 6-29

6-28

Test for Empty Strings and Missing Values

Test for Empty Strings and Missing Values

String arrays can contain both empty strings and missing values. Empty strings contain
zero characters and display as double quotes with nothing between them (*'**). You can
determine if a string is an empty string using the == operator. The empty string is a
substring of every other string. Therefore, functions such as contains always find the
empty string within other strings. String arrays also can contain missing values. Missing
values in string arrays display as <missing>. To find missing values in a string array,
use the Ismissing function instead of the == operator.

Test for Empty Strings
You can test a string array for empty strings using the == operator.

Starting in R2017a, you can create an empty string using double quotes with nothing
between them (*"""). Note that the size of str is 1-by-1, not 0-by-0. However, Str contains
zero characters.

Create an empty character vector using single quotes. Note that the size of chr is 0-
by-0. The character array chr actually is an empty array, and not just an array with zero

characters.
chr = ==
chr =

0x0 empty char array

Create an array of empty strings using the strings function. Each element of the array
is a string with no characters.

str2 = strings(1,3)

str2 = 1x3 string array

Test if str is an empty string by comparing it to an empty string.

if (str == "")

6-29

6 Characters and Strings

6-30

disp "str has zero characters®
end

str has zero characters

Do not use the isempty function to test for empty strings. A string with zero characters
still has a size of 1-by-1. However, you can test if a string array has at least one
dimension with a size of zero using the 1sempty function.

Create an empty string array using the strings function. To be an empty array, at least
one dimension must have a size of zero.

str = strings(0,3)
str =
0x3 empty string array
Test str using the isempty function.
isempty(str)

ans = logical
1

Test a string array for empty strings. The == operator returns a logical array that is the
same size as the string array.

str = ["Mercury”,"","Apollo™]
str = 1x3 string array

"Mercury"' "Apollo”

str ==

ans = 1x3 logical array
0 1 0

Find Empty Strings Within Other Strings

Strings always contain the empty string as a substring. In fact, the empty string is
always at both the start and the end of every string. Also, the empty string is always
found between any two consecutive characters in a string.

Test for Empty Strings and Missing Values

Create a string. Then test if it contains the empty string.

str = "Hello, world";
TF = contains(str,"")

TF = logical
1
Test if str starts with the empty string.

TF

startsWith(str,"")

TF

logical

Count the number of characters in str. Then count the number of empty strings in str.
The count function counts empty strings at the beginning and end of str, and between
each pair of characters. Therefore if str has N characters, it also has N+1 empty strings.

str

str =
"Hello, world"

strilength(str)
ans = 12
count(str,”™™)

ans = 13

Replace a substring with the empty string. When you call replace with an empty string,
it removes the substring and replaces it with a string that has zero characters.

ans =
"Hello, "

Insert a substring after empty strings using the insertAfter function. Because there

are empty strings between each pair of characters, insertAfter inserts substrings
between each pair.

6-31

6 Characters and Strings

6-32

insertAfter(str,""","-"")

ans
"_H-

D Il

-1-1-0-,- -w-o-r-1-d-"

In general, string functions that replace, erase, extract, or insert substrings allow you
to specify empty strings as the starts and ends of the substrings to modify. When you do
so, these functions operate on the start and end of the string, and between every pair of
characters.

Test for Missing Values

You can test a string array for missing values using the ismissing function. The
missing string is the string equivalent to NaN for numeric arrays. It indicates where a
string array has missing values. The missing string displays as <missing>.

To create a missing string, convert a missing value using the string function.
str = string(missing)

str =
<missing>

You can create a string array with both empty and missing strings. Use the ismissing
function to determine which elements are strings with missing values. Note that the
empty string is not a missing string.

str(1) = "";
str(2) = "Gemini";
str(3) = string(missing)
str = 1x3 string array
“Gemini™ <missing>
ismissing(str)

ans = 1x3 logical array
0 0 1

Compare Str to a missing string. The comparison is always O (False), even when you
compare a missing string to another missing string.

str == string(missing)

Test for Empty Strings and Missing Values

ans = 1x3 logical array
0 0 0

To find missing strings, use the ismissing function. Do not use the == operator.

See Also

contains | endsWith | eq | erase | eraseBetween | extractAfter |
extractBefore | extractBetween | insertAfter | insertBefore | ismissing |
replace | replaceBetween | startsWith | string | strings | strlength

Related Examples

. “Create String Arrays” on page 6-10

. “Analyze Text Data with String Arrays” on page 6-22
. “Search and Replace Text” on page 6-51

. “Compare Text” on page 6-45

6-33

6 Characters and Strings

Formatting Text

6-34

To convert data to text and control its format, you can use formatting operators with
common conversion functions, such as num2str and sprintf. These operators control
notation, alignment, significant digits, and so on. They are similar to those used by the
printf function in the C programming language. Typical uses for formatted text include
text for display and output files.

For example, %F converts floating-point values to text using fixed-point notation. Adjust
the format by adding information to the operator, such as %.2F to represent two digits
after the decimal mark, or %12F to represent 12 characters in the output, padding with
spaces as needed.

A = pi*ones(1,3);
txt = sprintf("%f | %.2F | %12F", A)

™t =

"3.141593 | 3.14 | 3.141593"

You can combine operators with ordinary text and special characters in a format
specifier. For instance, \n inserts a newline character.

txt = sprintf("Displaying pi: \n %f \n %.2Ff \n %12f", A)

t™@t

"Displaying pi:
3.141593
3.14

3.141593"

Functions that support formatting operators are compose, num2str, sprintf, fprintf,
and the error handling functions assert, error, warning, and MException.

Fields of the Formatting Operator

A formatting operator can have six fields, as shown in the figure. From right to left, the
fields are the conversion character, subtype, precision, field width, flags, and numeric

Formatting Text

identifier. (Space characters are not allowed in the operator. They are shown here only
to improve readability of the figure.) The conversion character is the only required field,
along with the leading % character.

% 3$0-12.5bu

Identifier J ‘— Conversion character

Flags
Field width

Subtype
Precision

Conversion Character

The conversion character specifies the notation of the output. It consists of a single
character and appears last in the format specifier.

Specifier

X X € 0 O @@« =H m O®© Q9 O

Description

Single character.

Decimal notation (signed).

Exponential notation (using a lowercase e, as in 3.1415e+00).
Exponential notation (using an uppercase E, as in 3.1415E+00).
Fixed-point notation.

The more compact of %e or %F. (Insignificant zeroes do not print.)
Same as %g, but using an uppercase E.

Octal notation (unsigned).

Character vector or string array.

Decimal notation (unsigned).

Hexadecimal notation (unsigned, using lowercase letters a—¥).

Hexadecimal notation (unsigned, using uppercase letters A—F).

For example, format the number 46 using different conversion characters to display the
number in decimal, fixed-point, exponential, and hexadecimal formats.

A = 46*ones(1,4);

6-35

6 Characters and Strings

>t

sprintf("%d %wF %e %X", A)

t™@t

"46 46.000000 4_.600000e+01 2E"

Subtype

The subtype field is a single alphabetic character that immediately precedes the
conversion character. Without the subtype field, the conversion characters %o, %x, %X,
and %u treat input data as integers. To treat input data as floating-point values instead
and convert them to octal, decimal, or hexadecimal representations, use one of following
subtype specifiers.

b The input data are double-precision floating-point values rather than unsigned
integers. For example, to print a double-precision value in hexadecimal, use a
format like %bx.

t The input data are single-precision floating-point values rather than unsigned
integers.
Precision

The precision field in a formatting operator is a nonnegative integer that immediately
follows a period. For example, in the operator %7 .3F, the precision is 3. For the %g
operator, the precision indicates the number of significant digits to display. For the %T,
%e, and %E operators, the precision indicates how many digits to display to the right of
the decimal point.

Display numbers to different precisions using the precision field.

txt = sprintf("%g %.29 %t %.2Ff", pi*50*ones(1,4))

™t

"157.08 1.6e+02 157.079633 157.08"

While you can specify the precision in a formatting operator for input text (for example,
in the %s operator), there is usually no reason to do so. If you specify the precision as p,

6-36

Formatting Text

and p is less than the number of characters in the input text, then the output contains
only the first p characters.

Field Width

The field width in a formatting operator is a nonnegative integer that specifies the
number of digits or characters in the output when formatting input values. For example,
in the operator %7 .3F, the field width is 7.

Specify different field widths. To show the width for each output, use the | character. By
default, the output text is padded with space characters when the field width is greater
than the number of characters.

t~t

sprintf (" |%e|%15e|%T|%15F] ", pi*50*ones(1,4))

™t =
"|1.570796e+02| 1.570796e+02|157.079633]| 157.079633]| "
When used on text input, the field width can determine whether to pad the output text

with spaces. If the field width is less than or equal to the number of characters in the
input text, then it has no effect.

txt = sprintf("%30s", "Pad left with spaces”)
t>t =

- Pad left with spaces”
Flags

Optional flags control additional formatting of the output text. The table describes the
characters you can use as flags.

Character Description Example

Minus sign (-) Left-justify the converted %-5.2d
argument in its field.

6-37

6 Characters and Strings

Character Description Example
Plus sign (+) For numeric values, always %+5.2d
print a leading sign character %+5s
(+ or -).

For text values, right-justify
the converted argument in its

field.

Space () Insert a space before the value. % 5.2F

Zero (0) Pad with zeroes rather than %05.2F
spaces.

Pound sign (#) Modify selected numeric %#5.0F
conversions:

* For %0, %X, or %X, print O,
0x, or OX prefix.

* For %f, %e, or %E, print
decimal point even when
precision is 0.

* For %g or %G, do not remove
trailing zeroes or decimal
point.

Right- and left-justify the output. The default behavior is to right-justify the output text.

txt = sprintf("right-justify: %12_2f\nleft-justify: %-12.2F",__.
12.3, 12.3)
t~>t =
"right-justify: 12.30
left-justify: 12.30 "

Display a + sign for positive numbers. The default behavior is to omit the leading + sign
for positive numbers.

txt = sprintf("no sign: %12.2f\nsign: %+12_2F",.._.
12.3, 12.3)

6-38

Formatting Text

t>t =
"no sign: 12.30
sign: +12.30"

Pad to the left with spaces and zeroes. The default behavior is to pad with spaces.

txt = sprintf("Pad with spaces: %12.2f\nPad with zeroes: %012.2f",...
5.2, 5.2)

™t

"Pad with spaces: 5.20
Pad with zeroes: 000000005.20"

Note: You can specify more than one flag in a formatting operator.

Value Identifiers

By default, functions such as sprintf insert values from input arguments into the
output text in sequential order. To process the input arguments in a nonsequential order,
specify the order using numeric identifiers in the format specifier. Specify nonsequential
arguments with an integer immediately following the % sign, followed by a $ sign.

Ordered Sequentially Ordered By Identifier
sprintf("%s %s %s-, ... sprintf("%3%s %2%s %1$s”, ...
"1st","2nd", "3rd") "1st","2nd", "3rd")
ans = ans =
"1st 2nd 3rd* "3rd 2nd 1st*

Special Characters
Special characters can be part of the output text. But because they cannot be entered

as ordinary text, they require specific character sequences to represent them. To insert
special characters into output text, use any of the character sequences in the table.

6-39

6 Characters and Strings

Special Character Representation in Format Specifier
Single quotation mark .
Percent character %%
Backslash \\
Alarm \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \v
Character whose Unicode numeric value can be \xN

represented by the hexadecimal number, N
Example: sprintf("\x5A")
returns “"Z*

Character whose Unicode numeric value can be \N

represented by the octal number, N
Example: sprintf("\132")
returns "Z*

Setting Field Width and Precision

The formatting operator follows a set of rules for formatting output text to the specified
field width and precision. You also can specify values for the field width and precision
outside the format specifier, and use numbered identifiers with the field width and
precision.

Rules for Formatting Precision and Field Width
The figure illustrates how the field width and precision settings affect the output of

the formatting functions. In this figure, the zero following the % sign in the formatting
operator means to add leading zeroes to the output text rather than space characters.

6-40

Formatting Text

Whole part of input Result has w digits,
value has has 3 digits extending to the
left with zeros

Format operator |

123.45678 ————» %09.3f ———» 00123.457

,—' field width: w = 9 |
precision: p=3

Fractional part of input Fractional part of the

value has 5 digits result has p digits
and is rounded

+ If the precision is not specified, then it defaults to six.

+ If the precision p is less than the number of digits in the fractional part of the input,
then only p digits are shown after the decimal point. The fractional value is rounded
in the output.

+ If the precision p is greater than the number of digits F in the fractional part of the
input, then p digits are shown after the decimal point. The fractional part is extended
to the right with p-F zeroes in the output.

+ If the field width is not specified, then it defaults to p+1+n, where n is the number of
digits in the whole part of the input value.

+ If the field width w is greater than p+1+n, then the whole part of the output value is
padded to the left with w—(p+1+n) additional characters. The additional characters
are space characters unless the formatting operator includes the O flag. In that case,
the additional characters are zeroes.

Specify Field Width and Precision Outside Format Specifier

You can specify the field width and precision using values from a sequential argument
list. Use an asterisk (*) in place of the field width or precision fields of the formatting
operator.

For example, format and display three numbers. In each case, use an asterisk to specify
that the field width or precision come from input arguments that follow the format
specifier.

txt = sprintf("%*f %.*F WF.*FFT, ..
15,123.45678, - ..

6-41

6 Characters and Strings

3,16.42837, . ..
6,4,pi)

™t =

" 123.456780 16.428 3.1416"

The table describes the effects of each formatting operator in the example.

Formatting Operator Description

%*Ff Specify width as the following input
argument, 15.

%.*F Specify precision as the following input
argument, 3.

%* . *F Specify width and precision as the
following input arguments, 6, and 4.

You can mix the two styles. For example, get the field width from the following input
argument and the precision from the format specifier.

txt = sprintf("%*.2f", 5, 123.45678)

t™>t

"123.46"

Specify Numbered Identifiers in Width and Precision Fields

You also can specify field width and precision as values from a nonsequential argument
list, using an alternate syntax shown in the figure. Within the formatting operator,
specify the field width and precision with asterisks that follow numbered identifiers and
$ signs. Specify the values of the field width and precision with input arguments that
follow the format specifier.

% 1% *2% *3% e
Value 4 | ‘— Precision

Field width

6-42

Formatting Text

For example, format and display three numbers. In each case, use a numbered identifier
to specify that the field width or precision come from input arguments that follow the
format specifier.

txt = sprintf("%1$*4$T %2$_*5$F %3$*6$.*7HF", ...
123.45678, 16.42837, pi, 15, 3, 6, 4)

t™@t

" 123.456780 16.428 3.1416"

The table describes the effect of each formatting operator in the example.

Formatting Operator Description
%1$*4$T 1$ specifies the first input argument,
123.45678, as the value

*43$ specifies the fourth input argument,
15, as the field width

%2%$. *5%F 2% specifies the second input argument,
16.42837, as the value

-*5$ specifies the fifth input argument, 3,
as the precision

%3%$*6%$. *7$F 3% specifies the third input argument, pi,
as the value

*6% specifies the sixth input argument, 6,
as the field width

-*7%$ specifies the seventh input argument,
4, as the precision

Restrictions on Using Identifiers

If any of the formatting operators include an identifier field, then all the operators

in the format specifier must include identifier fields. If you use both sequential and
nonsequential ordering in the same function call, then the output is truncated at the first
switch between sequential and nonsequential identifiers.

6-43

6 Characters and Strings

Valid Syntax Invalid Syntax
sprintf("%d %d %d %d", ... sprintf("%d %3%d %d %d", ...
1,2,3,4) 1,2,3,4)
ans = ans =
"1 234" "1 -

If your function call provides more input arguments than there are formatting operators
in the format specifier, then the operators are reused. However, only function calls

that use sequential ordering reuse formatting operators. You cannot reuse formatting
operators when you use numbered identifiers.

Valid Syntax

Invalid Syntax

sprintf("%d*,1,2,3,4)

ans =

sprintf("%1$d",1,2,3,4)

ans =
"1234* "1-
If you use numbered identifiers when the input data is a vector or array, then the output
does not contain formatted data.
Valid Syntax Invalid Syntax

v =[1.4 2.7 3.1];
sprintf("%.4f %.4F %.4F",v)

ans =

"1.4000 2.7000 3.1000"

v = [1.4 2.7 3.1];
sprintf("%3$.4F %1$.4F %2$.4F",v)

ans =

1x0 empty char array

See Also

compose | fprintf | num2str | sprintf

Related Examples

6-44

“Convert from Character Arrays to Numeric Values” on page 6-60

“Convert from Numeric Values to Character Array” on page 6-58

Compare Text

Compare Text

Compare text in character arrays and string arrays in different ways. String arrays were
introduced in Release 2016b. You can compare string arrays and character vectors with
relational opertors and with the strcmp function. You can sort string arrays using the
sort function, just as you would sort arrays of any other type. MATLAB® also provides
functions to inspect characters in pieces of text. For example, you can determine which
characters in a character vector or string array are letters or space characters.

Compare String Arrays for Equality

You can compare string arrays for equality with the relational operators == and ~=.
When you compare string arrays, the output is a logical array that has 1 where the
relation is true, and O where it is not true.

Create two string scalars. Starting in R2017a, you can create strings using double quotes
instead of the string function.

strl = "Hello";
str2 = "World";
strl,str2

strl =
"Hello"

str2 =
"World"

Compare strl and str2 for equality.
strl == str2

ans = logical
0

Compare a string array with multiple elements to a string scalar.
strl = ["Mercury","Gemini","Apollo™; ...

"Skylab™,"Skylab B","International Space Station'];
str2 = "Apollo™;
strl == str2

ans = 2x3 logical array

6-45

6 Characters and Strings

Compare a string array to a character vector. As long as one of the variables is a string
array, you can make the comparison.

chr = "Gemini”";

TF = (strl == chr)

TF = 2x3 logical array
O 1 o©
0O O oO

Index into strl with TF to extract the string elements that matched Gemini. You can
use logical arrays to index into an array.

stri(TF)

Compare for inequality using the ~= operator. Index into strl to extract the elements
that do not match "Gemini *.

TF

(strl ~= chr)
TF 2x3 logical array
0 1
1 1

Ll ||

stri(TF)

ans = 5x1 string array
"Mercury"'
"Skylab"
"Skylab B™
"Apollo"
"International Space Station"

Compare two nonscalar string arrays. When you compare two nonscalar arrays, they
must be the same size.

6-46

Compare Text

str2 = ["Mercury","Mars","Apollo™; ...
“"Jupiter","Saturn",""Neptune'];

TF = (strl == str2)

TF = 2x3 logical array
1 0 1
0 0O O

Index into strl to extract the matches.

str1(TF)

ans = 2x1 string array
"Mercury"
“Apollo™

Compare String Arrays with Other Relational Operators

You can also compare strings with the relational operators >, >=, <, and <=. Strings that
start with uppercase letters come before strings that start with lowercase letters. For
example, the string ""ABC" is less than "abc". Digits and some punctuation marks also
come before letters.

"ABC" < "abc™

ans = logical
1

Compare a string array that contains names to another name with the > operator. The
names Sanchez, de Ponte, and Nash come after Matthews, because S, d, and N all are
greater than M.

str = [''Sanchez','"Jones", ""de Ponte","Crosby", "Nash"];
TF = (str > "Matthews')

TF = 1x5 logical array
1 0 1 0 1

str(TF)

ans = 1x3 string array

6-47

6 Characters and Strings

6-48

""Sanchez"" ""de Ponte" "Nash"*

Sort String Arrays

You can sort string arrays. MATLAB® stores characters as Unicode® using the UTF-16
character encoding scheme. Character and string arrays are sorted according to the
UTF-16 code point order. For the characters that are also the ASCII characters, this
order means that uppercase letters come before lowercase letters. Digits and some
punctuation also come before letters.

Sort the string array str.

sort(str)

ans = 1x5 string array
"Crosby" "*Jones™ "Nash** "*Sanchez" "*de Ponte"

Sort a 2-by-3 string array. The sort function sorts the elements in each column
separately.

sort(str2)

ans = 2x3 string array
“Jupiter” “"Mars" "Apollo™
"Mercury"* "Saturn” "Neptune"

To sort the elements in each row, sort str2 along the second dimension.

sort(str2,2)

ans = 2x3 string array
"Apollo" "Mars" "Mercury"
“Jupiter” "Neptune" “"Saturn’

Compare Character Vectors

You can compare character vectors and cell arrays of character vectors to each other. Use
the strcmp function to compare two character vectors, or strncmp to compare the first N
characters. You also can use strcmpi and strncmpi for case-insensitive comparisons.

Compare two character vectors with the strcmp function. chrl and chr2 are not equal.

Compare Text

chrl "hello”;
chr2 “"help”;
TF = strcmp(chrl,chr2)

TF = logical

Note that the MATLAB strcmp differs from the C version of strcmp. The C version of
strcmp returns O when two character arrays are the same, not when they are different.

Compare the first two characters with the strncmp function. TF is 1 because both
character vectors start with the characters he.

TF

strncmp(chrl,chr2,2)

TF = logical

Compare two cell arrays of character vectors. strcmp returns a logical array that is the
same size as the cell arrays.

C1 {"pizza®; "chips”; "candy"};
C2 = {"pizza"; "chocolate”; “pretzels"};

strcmp(C1,C2)

ans = 3x1 logical array
1
0
0

Inspect Characters in String and Character Arrays

You can inspect the characters in string arrays or character arrays with the isstrprop,
isletter, and iIsspace functions.

+ The isstrprop inspects characters in either string arrays or character arrays.

+ The isletter and isspace functions inspect characters in character arrays only.

Determine which characters in a character vector are space characters. isspace returns
a logical vector that is the same size as chr.

chr = "Four score and seven years ago”;

6-49

6 Characters and Strings

6-50

TF

isspace(chr)

TF = 1x30 logical array
o o o 1 o o0 O O o 1 o O o0 1 0o o0 o0 o

o

The isstrprop function can query characters for many different traits. ISStrprop can
determine whether characters in a string or character vector are letters, alphanumeric
characters, decimal or hexadecimal digits, or punctuation characters.

Determine which characters in a string are punctuation marks. iSStrprop returns a
logical vector whose length is equal to the number of characters in str.

str = "A horse! A horse! My kingdom for a horsel!"

str =
"A horse! A horse! My kingdom for a horse!™

isstrprop(str,'punct')

ans = 1x41 logical array
o o o o o o o 1 o o o o o o o o 1 o0 o

Determine which characters in the character vector chr are letters.
isstrprop(chr,alpha™)

ans = 1x30 logical array
1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1

See Also

eq | ge | gt | isletter | isspace | isstrprop | le | It | ne | sort | strcmp

Related Examples

. “Create Character Arrays” on page 6-5

. “Create String Arrays” on page 6-10

. “Analyze Text Data with String Arrays” on page 6-22

. “Search and Replace Text” on page 6-51

. “Test for Empty Strings and Missing Values” on page 6-29

Search and Replace Text

Search and Replace Text

You can search for text in character arrays and string arrays, and replace substrings
with new text. String arrays, and new functions to search for and replace text, were
introduced in Release 2016b. Search for substrings with functions such as the contains
function. Similarly, replace text in strings with the replace function, or extract text
with functions such as extractBetween. You can use any of these functions with either
character vectors or string arrays. For compatibility, you can also use functions such as
strfind and strrep with both character vectors and string arrays.

Search for Text

Identify text in string arrays, character vectors, or cell arrays of character vectors with
the contains, startsWith, and endsWith function.

Create a string. Starting in R2017a, you can create strings using double quotes instead of
the string function.

str = "Rosemary Jones"

str =
""Rosemary Jones"

Determine whether str contains the substring mary. The contains function returns a
logical 1 if it finds the substring any place within the string.

TF = contains(str, " mary')

TF Iogical

You can also use the strfind function to find matching text. strfind returns the index
of the start of each match. In this case, strfind returns 5 because the min mary is the
fifth character of str.

idx = strfind(str, " mary"™)
idx = 5

Find multiple matches with strfind. When there are multiple matches, strfind
returns the indices as an array.

idx = strfind(str,"s")

6-51

6 Characters and Strings

6-52

Create a string array that contains many names. Determine which names contain the
substring Ann. The contains function returns a logical array that has a 1 wherever str
has an element that contains Ann. To create a new string array that includes only the

matches, index into str with TF.

str = ["Rosemary Ann Jones","Peter Michael Smith","Ann Marie Young']

str = 1x3 string array
"Rosemary Ann Jones" "Peter Michael Smith"

TF = contains(str,"Ann")

TF

1x3 logical array
0 1

[E

matches = str(TF)

matches = 71x2 string array
"Rosemary Ann Jones" "Ann Marie Young"

Find the strings that begin with Ann.

TF = startsWith(str,"Ann");
matches = str(TF)

matches =
"Ann Marie Young"

"Ann Marie Young"

Similarly, the endsWith function find strings that end with a specified piece of text.

You can also use the contains, startsWith, and endsWith functions to determine

whether character vectors contains text.
chr = "John Paul Jones”

chr =
“John Paul Jones”

Search and Replace Text

TF

contains(chr, "Paul*)

TF

logical

TF

endsWith(chr, "Paul ®)

TF

Iogical

Use the contains function to find text in rows of a string array. census1905 contains a
few rows of simulated census data for the year 1905. Each row contains a name, year of
birth, and number of times that name was given in that year.

census1905 = ["Ann Mary',"1905","230";
""John",""1905",""'5400";
"Mary',"1905",""4600";
"Maryjane',''1905","304"";
“Paul™,'1905","1206"] ;

Find the rows where the name is equal to Mary.

TF = (census1905(:,1) == "Mary');
census1905(TF,)

ans = 1x3 string array
"Mary" ""1905" 4600

Find the rows where the name is a variation of Mary with the contains function.

TF = contains(census1905(:,1),"Mary');
census1905(TF,)

ans = 3x3 string array

"Ann Mary"' ''1905" ''230"
"Mary"* ''1905" "'4600"
"Maryjane" '"1905"" 304"

Replace Text

You can replace text in string arrays, character vectors, or cell arrays of character vectors
with the replace function.

6-53

6 Characters and Strings

6-54

Create a string. Replace the substring mary with anne.
str = "Rosemary Jones"

str =
""Rosemary Jones™

newStr = replace(str, "mary',"anne"

newStr =
""Roseanne Jones'

You can also replace text using the strrep function. However, the replace function is
recommended.

newStr = strrep(str,'Jones", "Day™)

newStr =
""Rosemary Day"

Create a string array that contains many names.
str = ["Rosemary Ann Jones","Peter Michael Smith","Ann Marie Young']

str = 1x3 string array
""Rosemary Ann Jones™ "Peter Michael Smith" "Ann Marie Young"

Specify multiple names to replace.

oldText ["Ann™,""Michael];
newText ['Beth™,""John"];
newStr = replace(str,oldText,newText)

newStr = 1x3 string array
""Rosemary Beth Jones™ "Peter John Smith™ ""Beth Marie Young

Replace text in a character vector. You can use replace and replaceBetween with
character vectors, as well as with strings.

chr = "Mercury, Gemini, Apollo*

chr =
"Mercury, Gemini, Apollo*®

replace(chr, "Gemini ", "Mars"®)

Search and Replace Text

ans =
"Mercury, Mars, Apollo*

Replace text in a string array of file names. Append the file names to the address of
a website. The file names contain spaces, but spaces cannot be part of web addresses.
Replace the space character, " "', with %20, which is the standard for web addresses.

str = ["Financial Report.docx";
"Quarterly 2015 Details.docx™;
"Slides.pptx"]

str = 3x1 string array
"Financial Report.docx™
"Quarterly 2015 Details.docx™
"Slides.pptx"

newStr = replace(str,” ","%20™)

newStr = 3x1 string array
"Financial%20Report.docx""
"Quarterly%202015%20Detai Is.docx™
"Slides.pptx™

Append the file names to the address of a website.

filenames = "http://example.com/Documents/"™ + newStr

filenames = 3x1 string array
"http://example.com/Documents/Financial%20Report.docx"”

"http://example.com/Documents/Quarterly%202015%20Details.docx™
"http://example.com/Documents/Slides.pptx"

Extract Text

Extract a substring from string arrays or character vectors with the extractAfter,
extractBefore, and extractBetween functions. Use these functions to extract
different substrings that precede, follow, or occur between specified pieces of text.

Create a string array that contains file names. Extract the portions of the names after C:
\Temp\ with the extractAfter function.

str = ["'C:\Temp\MyReport.docx";

6-55

6 Characters and Strings

"C:\Temp\Data\Samplel._.csv";
"C:\Temp\Slides.pptx']

str = 3x1 string array
"C:\Temp\MyReport.docx"
"C:\Temp\Data\Samplel.csv"
"C:\Temp\Slides.pptx"

filenames = extractAfter(str," " C:\Temp\')

fillenames = 3x1 string array
"MyReport.docx"
"Data\Samplel.csv"
"Slides.pptx"

Extract customer names from a string array that encodes the names within XML tags.

str = ["'<CustomerName>Elizabeth Day</CustomerName>"";
""<CustomerName>George Adams</CustomerName>";
"'<CustomerName>Sarah Young</CustomerName>'"]

str = 3x1 string array
""<CustomerName>El izabeth Day</CustomerName>"
"'<CustomerName>George Adams</CustomerName>"
"'<CustomerName>Sarah Young</CustomerName>"

names extractBetween(str, "'<CustomerName>",""</CustomerName>"")

names = 3x1 string array
"Elizabeth Day"
""George Adams'
"Sarah Young"

See Also

contains | endsWith | erase | eraseBetween | extractAfter | extractBefore
| extractBetween | insertAfter | insertBefore | replace | replaceBetween |
startsWith | strfind | strrep

Related Examples
. “Create Character Arrays” on page 6-5

6-56

Search and Replace Text

“Create String Arrays” on page 6-10

“Analyze Text Data with String Arrays” on page 6-22
“Compare Text” on page 6-45

“Test for Empty Strings and Missing Values” on page 6-29

“Regular Expressions” on page 2-42

6-57

6 Characters and Strings

Convert from Numeric Values to Character Array

In this section...

“Function Summary” on page 6-58
“Convert Numbers to Character Codes” on page 6-59

“Represent Numbers as Text” on page 6-59

“Convert to Specific Radix” on page 6-59

Function Summary

The functions listed in this table provide a number of ways to convert numeric data to

character arrays.

Function Description Example
char Convert a positive integer to an equivalent [72 105] — "Hi~
character. (Truncates any fractional parts.)
string Convert an array of double-precision values to a [72 105] —» ™72
string array. 105"
[3.1416 2.178] —
“3.1416" *2.178"
int2str Convert a positive or negative integer to a character |[72 105] — "72
type. (Rounds any fractional parts.) 105*
num2str Convert a numeric type to a character type of the [72 105] —
specified precision and format. "72/105/" (format set
to %1d/)
mat2str Convert a numeric type to a character type of the [72 105] — "[72
specified precision, returning a character vector 105]*
MATLAB can evaluate.
dec2hex Convert a positive integer to a character type of [72 105] — "48 69*
hexadecimal base.
dec2bin Convert a positive integer to a character type of [72 105] —
binary base. *1001000
1101001*

6-58

Convert from Numeric Values to Character Array

Function Description Example
dec2base Convert a positive integer to a character type of any [[72 105] — "110
base from 2 through 36. 151" (base set to 8)

Convert Numbers to Character Codes

The char function converts integers to Unicode character codes and returns a character
array composed of the equivalent characters:

x = [77 65 84 76 65 66];
char(x)
ans =

MATLAB

Represent Numbers as Text

The int2str, num2str, and mat2str functions represent numeric values as text
where each character represents a separate digit of the input value. The int2str and
num2str functions are often useful for labeling plots. For example, the following lines
use hum2str to prepare automated labels for the x-axis of a plot:

function plotlabel(x, y)

plot(x, y)
chrl = num2str(min(x));
chr2 = num2str(max(x));

out = [*"Value of f from " chrl * to " chr2];
xlabel (out);

Convert to Specific Radix
Another class of conversion functions changes numeric values into character arrays

representing a decimal value in another base, such as binary or hexadecimal
representation. This includes dec2hex, dec2bin, and dec2base.

6-59

6 Characters and Strings

Convert from Character Arrays to Numeric Values

In this section...

“Function Summary” on page 6-60
“Convert from Character Code” on page 6-61

“Convert Text that Represents Numeric Values” on page 6-61

“Convert from Specific Radix” on page 6-62

Function Summary

The functions listed in this table provide a number of ways to convert character arrays to
numeric data.

Function Description Example

uintN (e.g., Uint8) Convert a character to an integer code that "Hi* —» 72 105
represents that character.

str2num Convert a character type to a numeric type. "72 105" — [72 105]

str2double Similar to str2num, but offers better 72" 105" — [72

performance and works with string arrays and |105]
cell arrays of character vectors.
{"72% 105"} > [72
105]

hex2num Convert a numeric type to a character type of |"A" —
specified precision, returning a character array |"-1.4917e-154"
that MATLAB can evaluate.

hex2dec Convert a character type of hexadecimal base to| A" — 10
a positive integer.

bin2dec Convert a character type of binary number to a |*1010" — 10
decimal number.

base2dec Convert a character type of any base number 12" — 10 (if base ==
from 2 through 36 to a decimal number. 8)

6-60

Convert from Character Arrays to Numeric Values

Convert from Character Code

Character arrays and string arrays store each character as a 16-bit numeric value. Use
one of the integer conversion functions (e.g., uint8) or the double function to convert
characters to their numeric values, and char to revert to character representation:

name = "Thomas R. Lee";
name = double(name)
name =
84 104 111 109 97 115 32 82 46 32 76 101 101
name = char(name)
name =

Thomas R. Lee

Convert Text that Represents Numeric Values

Use str2num to convert a character array to the numeric value it represents:

chr = "37.294e-1";
val = str2num(chr)
val =

3.7294

The str2double function converts a string array or a cell array of character vectors to
the double-precision values they represent:

c = {"37.294e-1"; "-58.375"; "13.796"};
str = string({"3.14159"%,72.718"});

d = str2double(c)
d =
3.7294
-58.3750
13.7960
X = str2double(str)
X =

6-61

6 Characters and Strings

6-62

3.1416 2.7180

whos
Name Size Bytes Class Attributes
c 3x1 380 cell
d 3x1 24 double
str 1x2 196 string
X 1x2 16 double

Convert from Specific Radix

To convert from a character representation of a nondecimal number to the value of that
number, use one of these functions: hex2num, hex2dec, bin2dec, or base2dec.

The hex2num and hex2dec functions both take hexadecimal (base 16) inputs, but
hex2num returns the IEEE double-precision floating-point number it represents, while
hex2dec converts to a decimal integer.

Function Summary

Function Summary

MATLAB provides these functions for working with character arrays:

* Functions to Create Character Arrays

* Functions to Modify Character Arrays

* Functions to Read and Operate on Character Arrays

* Functions to Search or Compare Character Arrays

+ Functions to Determine Class or Content

* Functions to Convert Between Numeric and Text Data Types

* Functions to Work with Cell Arrays of Character Vectors as Sets

Functions to Create Character Arrays

Function

Description

‘chr'

Create the character vector specified between quotes.

blanks

Create a character vector of blanks.

sprintf

Write formatted data as text.

strcat

Concatenate character arrays.

char

Concatenate character arrays vertically.

Functions to Modify Character Arrays

Function

Description

deblank

Remove trailing blanks.

lower

Make all letters lowercase.

sort

Sort elements in ascending or descending order.

strjust

Justify a character array.

strrep

Replace text within a character array.

strtrim

Remove leading and trailing white space.

upper

Make all letters uppercase.

Functions to Read and Operate on Character Arrays

6-63

6 Characters and Strings

6-64

Function Description
eval Execute a MATLAB expression.
sscanf Read a character array under format control.

Functions to Search or Compare Character Arrays

Function Description

regexp Match regular expression.

strcmp Compare character arrays.

strcmpi Compare character arrays, ignoring case.
strfind Find a term within a character vector.

strncmp Compare the first N characters of character arrays.
strncmpi Compare the first N characters, ignoring case.
strtok Find a token in a character vector.

textscan Read data from a character array.

Functions to Determine Class or Content

Function Description

iscellstr Return true for a cell array of character vectors.
ischar Return true for a character array.

isletter Return true for letters of the alphabet.
isstrprop Determine if a string is of the specified category.
isspace Return true for white-space characters.

Functions to Convert

Between Numeric and Text Data Types

Function Description

char Convert to a character array.

cellstr Convert a character array to a cell array of character vectors.
double Convert a character array to numeric codes.

int2str Represent an integer as text.

mat2str Convert a matrix to a character array you can run eval on.

Function Summary

Function Description

num2str Represent a number as text.

str2num Convert a character vector to the number it represents.
str2double Convert a character vector to the double-precision value it

represents.

Functions to Work with Cell Arrays of Character Vectors as Sets

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.

setdiff Return the set difference of two vectors.
setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.

unique Set the unique elements of a vector.

6-65

Dates and Time

* “Represent Dates and Times in MATLAB” on page 7-2

+ “Specify Time Zones” on page 7-6

* “Convert Date and Time to Julian Date or POSIX Time” on page 7-8

+ “Set Date and Time Display Format” on page 7-12

+ “Generate Sequence of Dates and Time” on page 7-17

+ “Share Code and Data Across Locales” on page 7-24

+ “Extract or Assign Date and Time Components of Datetime Array” on page 7-27
+ “Combine Date and Time from Separate Variables” on page 7-31

+ “Date and Time Arithmetic”’ on page 7-33

* “Compare Dates and Time” on page 7-40

+ “Plot Dates and Durations” on page 7-44

* “Core Functions Supporting Date and Time Arrays” on page 7-51

+ “Convert Between Datetime Arrays, Numbers, and Text” on page 7-52
+ “Carryover in Date Vectors and Strings” on page 7-58

+ “Converting Date Vector Returns Unexpected Output” on page 7-59

7 Dates and Time

Represent Dates and Times in MATLAB

The primary way to store date and time information is in datetime arrays, which
support arithmetic, sorting, comparisons, plotting, and formatted display. The results of
arithmetic differences are returned in duration arrays or, when you use calendar-based
functions, in calendarDuration arrays.

For example, create a MATLAB datetime array that represents two dates: June 28, 2014
at 6 a.m. and June 28, 2014 at 7 a.m. Specify numeric values for the year, month, day,
hour, minute, and second components for the datetime.

t

datetime(2014,6,28,6:7,0,0)

t =
28-Jun-2014 06:00:00 28-Jun-2014 07:00:00

Change the value of a date or time component by assigning new values to the properties
of the datetime array. For example, change the day number of each datetime by
assigning new values to the Day property.

t.Day = 27:28
t =
27-Jun-2014 06:00:00 28-Jun-2014 07:00:00

Change the display format of the array by changing its Format property. The following
format does not display any time components. However, the values in the datetime array
do not change.

t.Format = "MMM dd, yyyy®

t =
Jun 27, 2014 Jun 28, 2014

If you subtract one datetime array from another, the result is a duration array in
units of fixed length.

t2 = datetime(2014,6,29,6,30,45)

t2 =

Represent Dates and Times in MATLAB

29-Jun-2014 06:30:45

d=1t2 - t

48:30:45 23:30:45

By default, a duration array displays in the format, hours:minutes:seconds. Change
the display format of the duration by changing its Format property. You can display the
duration value with a single unit, such as hours.

d.Format = "h*
d =
48.512 hrs 23.512 hrs

You can create a duration in a single unit using the seconds, minutes, hours, days, or
years functions. For example, create a duration of 2 days, where each day is exactly 24
hours.

d days(2)

d =
2 days

You can create a calendar duration in a single unit of variable length. For example, one
month can be 28, 29, 30, or 31 days long. Specify a calendar duration of 2 months.

L

calmonths(2)

L =
2mo

Use the caldays, calweeks, calquarters, and calyears functions to specify
calendar durations in other units.

Add a number of calendar months and calendar days. The number of days remains
separate from the number of months because the number of days in a month is not fixed,
and cannot be determined until you add the calendar duration to a specific datetime.

L = calmonths(2) + caldays(35)

7 Dates and Time

7-4

L =
2mo 35d

Add calendar durations to a datetime to compute a new date.
t2 = t + calmonths(2) + caldays(35)
t2 =

Oct 01, 2014 Oct 02, 2014

t2 is also a datetime array.

whos t2
Name Size Bytes Class Attributes
t2 1x2 161 datetime

In summary, there are several ways to represent dates and times, and MATLAB has a
data type for each approach:

* Represent a point in time, using the datetime data type.
Example: Wednesday, June 18, 2014 10:00:00

* Represent a length of time, or a duration in units of fixed length, using the duration
data type. When using the duration data type, 1 day is always equal to 24 hours,
and 1 year is always equal to 365.2425 days.

Example: 72 hours and 10 minutes

+ Represent a length of time, or a duration in units of variable length, using the
calendarDuration data type.
Example: 1 month, which can be 28, 29, 30, or 31 days long.
The calendarDuration data type also accounts for daylight saving time changes
and leap years, so that 1 day might be more or less than 24 hours, and 1 year can
have 365 or 366 days.

Represent Dates and Times in MATLAB

Datetime
Jure 18, 10:00am

Jurne 17 June 20
2:30pm ¥ 2:40pm

b

Duration
72 hours, 10 minutes

June 3 July 3
5:30pm ¢ ¥ 5:30pm

b
r

Calendar Duration
1 manth

See Also

calendarDuration | datetime | datetime Properties | duration

7-5

7 Dates and Time

Specify Time Zones

In MATLAB, a time zone includes the time offset from Coordinated Universal Time
(UTC), the daylight saving time offset, and a set of historical changes to those values.
The time zone setting is stored in the TimeZone property of each datetime array. When
you create a datetime, it is unzoned by default. That is, the TimeZone property of the
datetime is empty (" *). If you do not work with datetime values from multiple time zones
and do not need to account for daylight saving time, you might not need to specify this
property.

You can specify a time zone when you create a datetime, using the "TimeZone" name-
value pair argument. The time zone value " local " specifies the system time zone. To
display the time zone offset for each datetime, include a time zone offset specifier such as
"Z" in the value for the "Format”™ argument.

t

datetime(2014,3,8:9,6,0,0,"TimeZone","local ", ...
"Format”, "d-MMM-y HH:mm:ss Z%)

8-Mar-2014 06:00:00 -0500 9-Mar-2014 06:00:00 -0400

A different time zone offset is displayed depending on whether the datetime occurs
during daylight saving time.

You can modify the time zone of an existing datetime. For example, change the
TimeZone property of t using dot notation. You can specify the time zone value as

the name of a time zone region in the IANA Time Zone Database. A time zone region
accounts for the current and historical rules for standard and daylight offsets from UTC
that are observed in that geographic region.

t.TimeZone = "Asia/Shanghai”
t =
8-Mar-2014 19:00:00 +0800 9-Mar-2014 18:00:00 +0800

You also can specify the time zone value as a character vector of the form +HH:-mm or -
HH:-mm, which represents a time zone with a fixed offset from UTC that does not observe
daylight saving time.

t.TimeZone = "+08:00"

Specify Time Zones

8-Mar-2014 19:00:00 +0800 9-Mar-2014 18:00:00 +0800

Operations on datetime arrays with time zones automatically account for time zone
differences. For example, create a datetime in a different time zone.

u datetime(2014,3,9,6,0,0,"TimeZone", "Europe/London”, . . .

"Format”, "d-MMM-y HH:mm:ss Z%)

9-Mar-2014 06:00:00 +0000
View the time difference between the two datetime arrays.
dt =t - u
dt =

-19:00:00 04:00:00

When you perform operations involving datetime arrays, the arrays either must all have
a time zone associated with them, or they must all have no time zone.

See Also

datetime | datetime Properties | timezones

Related Examples
. “Represent Dates and Times in MATLAB” on page 7-2
. “Convert Date and Time to Julian Date or POSIX Time” on page 7-8

7 Dates and Time

Convert Date and Time to Julian Date or POSIX Time

You can convert datetime arrays to represent points in time in specialized numeric
formats. In general, these formats represent a point in time as the number of seconds

or days that have elapsed since a specified starting point. For example, the Julian

date is the number of days and fractional days that have elapsed since the beginning

of the Julian period. The POSIX® time is the number of seconds that have elapsed

since 00:00:00 1-Jan-1970 UTC (Universal Coordinated Time). MATLAB® provides the
Juliandate and posixtime functions to convert datetime arrays to Julian dates and
POSIX times.

While datetime arrays are not required to have a time zone, converting "unzoned"
datetime values to Julian dates or POSIX times can lead to unexpected results. To
ensure the expected result, specify the time zone before conversion.

Specify Time Zone Before Conversion

You can specify a time zone for a datetime array, but you are not required to do so. In
fact, by default the datetime function creates an "unzoned" datetime array.

Create a datetime value for the current date and time.

d = datetime("now")

d = datetime
24-Feb-2017 13:59:25

d is constructed from the local time on your machine and has no time zone associated
with it. In many contexts, you might assume that you can treat the times in an unzoned
datetime array as local times. However, the jul iandate and posixtime functions
treat the times in unzoned datetime arrays as UTC times, not local times. To avoid
any ambiguity, it is recommended that you avoid using jul 1andate and posixtime on
unzoned datetime arrays. For example, avoid using posixtime(datetime("now™))
in your code.

If your datetime array has values that do not represent UTC times, specify the
time zone using the TimeZone name-value pair argument so that jul iandate and
posixtime interpret the datetime values correctly.

d = datetime("now",*TimeZone", "America/New_York®)

d = datetime

Convert Date and Time to Julian Date or POSIX Time

24-Feb-2017 13:59:25

As an alternative, you can specify the TimeZone property after you create the array.
d.TimeZone = "America/lLos_Angeles”

d = datetime
24-Feb-2017 10:59:25

To see a complete list of time zones, use the timezones function.
Convert Zoned and Unzoned Datetime Values to Julian Dates

A Julian date is the number of days (including fractional days) since noon on November
24, 4714 BCE, in the proleptic Gregorian calendar, or January 1, 4713 BCE, in the
proleptic Julian calendar. To convert datetime arrays to Julian dates, use the
Juliandate function.

Create a datetime array and specify its time zone.

DZ = datetime("2016-07-29 10:05:24%") + calmonths(1:3);
DZ.TimeZone = “America/New_ York®

DZ = 1x3 datetime array
29-Aug-2016 10:05:24 29-Sep-2016 10:05:24 29-0ct-2016 10:05:24

Convert D to the equivalent Julian dates.

format longG
JDZ = juliandate(DZ2)

JDZ =
2457630.08708333 2457661.08708333 2457691.08708333

Create an unzoned copy of DZ. Convert D to the equivalent Julian dates. As D has no time
zone, jul 1andate treats the times as UTC times.

D = DZ;

D.TimeZone = "°;
JD = juliandate(D)
JD =

7 Dates and Time

7-10

2457629.92041667 2457660.92041667 2457690.92041667

Compare JDZ and JD. The differences are equal to the time zone offset between UTC and
the America/New_York time zone in fractional days.

JbZ - JD

ans =
0.166666666511446 0.166666666511446 0.166666666511446

Convert Zoned and Unzoned Datetime Values to POSIX Times

The POSIX time is the number of seconds (including fractional seconds) elapsed since
00:00:00 1-Jan-1970 UTC (Universal Coordinated Time), ignoring leap seconds. To
convert datetime arrays to POSIX times, use the posixtime function.

Create a datetime array and specify its time zone.

DZ = datetime("2016-07-29 10:05:24") + calmonths(1:3);
DZ.TimeZone = "America/New_York®

DZ = 1x3 datetime array
29-Aug-2016 10:05:24 29-Sep-2016 10:05:24 29-0ct-2016 10:05:24

Convert D to the equivalent POSIX times.
PTZ = posixtime(DZ)

PTZ =
1472479524 1475157924 1477749924

Create an unzoned copy of DZ. Convert D to the equivalent POSIX times. As D has no
time zone, posixtime treats the times as UTC times.

D = DZ;
D.TimeZone = "*;
PT = posixtime(D)
PT =

1472465124 1475143524 1477735524

Convert Date and Time to Julian Date or POSIX Time

Compare PTZ and PT. The differences are equal to the time zone offset between UTC and
the America/New_York time zone in seconds.

PTZ - PT
ans =

14400 14400 14400
See Also

datetime | datetime Properties | juliandate | posixtime | timezones

Related Examples
. “Represent Dates and Times in MATLAB” on page 7-2
. “Specify Time Zones” on page 7-6

7-11

7 Dates and Time

Set Date and Time Display Format

7-12

In this section...

“Formats for Individual Date and Duration Arrays” on page 7-12
“datetime Display Format” on page 7-12

“duration Display Format” on page 7-13

“calendarDuration Display Format” on page 7-14

“Default datetime Format” on page 7-15

Formats for Individual Date and Duration Arrays

datetime, duration, and calendarDuration arrays have a Format property that
controls the display of values in each array. When you create a datetime array, it uses
the MATLAB global default datetime display format unless you explicitly provide a
format. Use dot notation to access the Format property to view or change its value. For
example, to set the display format for the datetime array, t, to the default format, type:

t.Format = “default”

Changing the Format property does not change the values in the array, only their
display. For example, the following can be representations of the same datetime value
(the latter two do not display any time components):

Thursday, August 23, 2012 12:35:00
August 23, 2012
23-Aug-2012

The Format property of the datetime, duration, and calendarDuration data types
accepts different formats as inputs.

datetime Display Format

You can set the Format property to one of these character vectors.

Value of Format Description

"default” Use the default display format.

Set Date and Time Display Format

Value of Format Description
"defaultdate” Use the default date display format that
does not show time components.

To change the default formats, see “Default datetime Format” on page 7-15.

Alternatively, you can use the letters A-Z and a-z to specify a custom date format. You
can include nonletter characters such as a hyphen, space, or colon to separate the fields.
This table shows several common display formats and examples of the formatted output
for the date, Saturday, April 19, 2014 at 9:41:06 PM in New York City.

Value of Format Example

"yyyy-MM-dd* 2014-04-19

“dd/MM/yyyy *© 19/04/2014

“dd.MM.yyyy* 19.04.2014

"yyyy# MM# dd#*" 2014# 04# 19#

"MMMM d, yyyy" April 19, 2014

“"eeee, MMMM d, yyyy h:mm a- Saturday, April 19, 2014 9:41 PM
"MMMM d, yyyy HH:mm:ss Z*© April 19, 2014 21:41:06 -0400
"yyyy-MM-dd = " T "HHzmmXXX*" 2014-04-19T21:41-04:00

For a complete list of valid symbolic identifiers, see the Format property for datetime
arrays.

Note: The letter identifiers that datetime accepts are different from those used by the
datestr, datenum, and datevec functions.

duration Display Format

To display a duration as a single number that includes a fractional part (for example,
1.234 hours), specify one of these character vectors:

Value of Format Description
Y%

Number of exact fixed-length years. A fixed-length
year is equal to 365.2425 days.

7-13

7 Dates and Time

7-14

Value of Format Description

"d* Number of exact fixed-length days. A fixed-length day
1s equal to 24 hours.

"h" Number of hours

“m* Number of minutes

S Number of seconds

To specify the number of fractional digits displayed, user the format function.

To display a duration in the form of a digital timer, specify one of the following character
vectors.

* "dd:hh:mm:ss*

* “"hh:mm:ss*

* "mm:ss”

* “hhimm®

You also can display up to nine fractional second digits by appending up to nine S

characters. For example, "hh:mm:ss.SSS" displays the milliseconds of a duration value
to 3 digits.

Changing the Format property does not change the values in the array, only their
display.

calendarDuration Display Format

Specify the Format property of a calendarDuration array as a character vector that
can include the characters y, q, m, w, d, and t, in this order. The character vector must
include m to display the number of months, d to display the number of days, and t to
display the number of hours, minutes, and seconds. The y, g, and w characters are
optional.

This table describes the date and time components that the characters represent.

Character Date or Time Unit Details
y Years Multiples of 12 months display as a number of
years.

Set Date and Time Display Format

Character Date or Time Unit Details
q Quarters Multiples of 3 months display as a number of
quarters.
Months Must be included in Format.
Weeks Multiples of 7 days display as a number of
weeks.
d Days Must be included in Format.
Time (hours, minutes, |Must be included in Format.
and seconds)

To specify the number of digits displayed for fractional seconds, use the format function.
If the value of a date or time component is zero, it is not displayed.

Changing the Format property does not change the values in the array, only their
display.

Default datetime Format

You can set default formats to control the display of datetime arrays created without
an explicit display format. These formats also apply when you set the Format property
of a datetime array to "default” or "defaultdate”. When you change the default
setting, datetime arrays set to use the default formats are displayed automatically
using the new setting.

Changes to the default formats persist across MATLAB sessions.

To specify a default format, type

datetime.setDefaultFormats(“default®, fmt)
where fmt is a character vector composed of the letters A-Z and a-z described for the
Format property of datetime arrays, above. For example,

datetime.setDefaultFormats(“default®, "yyyy-MM-dd hh:mm:ss*®)
sets the default datetime format to include a 4-digit year, 2-digit month number, 2-digit
day number, and hour, minute, and second values.

In addition, you can specify a default format for datetimes created without time
components. For example,

7-15

7 Dates and Time

7-16

datetime.setDefaultFormats(“defaultdate”, "yyyy-MM-dd*)
sets the default date format to include a 4-digit year, 2-digit month number, and 2-digit
day number.

To reset the both the default format and the default date-only formats to the factory
defaults, type

datetime.setDefaultFormats(“reset”)
The factory default formats depend on your system locale.

You also can set the default formats in the Preferences dialog box. For more
information, see “Set Command Window Preferences”.

See Also

calendarDuration | datetime | datetime Properties | duration | format

Generate Sequence of Dates and Time

Generate Sequence of Dates and Time

In this section...

“Sequence of Datetime or Duration Values Between Endpoints with Step Size” on page
7-17
“Add Duration or Calendar Duration to Create Sequence of Dates” on page 7-19

“Specify Length and Endpoints of Date or Duration Sequence” on page 7-20

“Sequence of Datetime Values Using Calendar Rules” on page 7-21

Sequence of Datetime or Duration Values Between Endpoints with Step
Size

This example shows how to use the colon () operator to generate sequences of datetime
or duration values in the same way that you create regularly spaced numeric vectors.

Use Default Step Size

Create a sequence of datetime values starting from November 1, 2013 and ending on
November 5, 2013. The default step size is one calendar day.

tl = datetime(2013,11,1,8,0,0);
t2 = datetime(2013,11,5,8,0,0);
t = tl:t2

t = 1x5 datetime array
01-Nov-2013 08:00:00 02-Nov-2013 08:00:00 03-Nov-2013 08:00:00 04-Nov-2013 08
Specify Step Size
Specify a step size of 2 calendar days using the caldays function.
t = tl:caldays(2):t2
t = 1x3 datetime array

01-Nov-2013 08:00:00 03-Nov-2013 08:00:00 05-Nov-2013 08:00:00

Specify a step size in units other than days. Create a sequence of datetime values spaced
18 hours apart.

7-17

7 Dates and Time

-
1

tl:hours(18):t2

-
1

1x6 datetime array
01-Nov-2013 08:00:00 02-Nov-2013 02:00:00 02-Nov-2013 20:00:00 03-Nov-2013 14

Use the years, days, minutes, and seconds functions to create datetime and duration
sequences using other fixed-length date and time units. Create a sequence of duration
values between 0 and 3 minutes, incremented by 30 seconds.

d

0:seconds(30) :minutes(3)

d

1x7 duration array
0 min 0.5 min 1 min 1.5 min 2 min 2.5 min 3 min

Compare Fixed-Length Duration and Calendar Duration Step Sizes

Assign a time zone to tl and t2. In the America/New_York time zone, t1 now occurs
just before a daylight saving time change.

tl.TimeZone
t2.TimeZone

"America/New_York"®;
"America/New_York"®;

If you create the sequence using a step size of one calendar day, then the difference
between successive datetime values is not always 24 hours.

t = tl:t2;
dt = diff(t)

dt = 71x4 duration array
24:00:00 25:00:00 24:00:00 24:00:00

Create a sequence of datetime values spaced one fixed-length day apart,
t = tl:days(1):t2

t = 1x5 datetime array
01-Nov-2013 08:00:00 02-Nov-2013 08:00:00 03-Nov-2013 07:00:00 04-Nov-2013 07

Verify that the difference between successive datetime values is 24 hours.

dt = diff(t)

7-18

Generate Sequence of Dates and Time

dt = 1x4 duration array
24:00:00 24:00:00 24:00:00 24:00:00

Integer Step Size

If you specify a step size in terms of an integer, it is interpreted as a number of 24-hour

days.

t

tl:1:t2

t = 1x5 datetime array
01-Nov-2013 08:00:00 02-Nov-2013 08:00:00 03-Nov-2013 07:00:00

Add Duration or Calendar Duration to Create Sequence of Dates

04-Nov-2013 07

This example shows how to add a duration or calendar duration to a datetime to create a

sequence of datetime values.

Create a datetime scalar representing November 1, 2013 at 8:00 AM.
tl = datetime(2013,11,1,8,0,0);

Add a sequence of fixed-length hours to the datetime.

t

tl + hours(0:2)

t = 1x3 datetime array
01-Nov-2013 08:00:00 01-Nov-2013 09:00:00 01-Nov-2013 10:00:00

Add a sequence of calendar months to the datetime.
t = t1 + calmonths(1:5)

t

1x5 datetime array
01-Dec-2013 08:00:00 01-Jan-2014 08:00:00 01-Feb-2014 08:00:00
Each datetime in t occurs on the first day of each month.

Verify that the dates in t are spaced 1 month apart.

dt = caldiff(t)

0l1-Mar-2014 08

7-19

7 Dates and Time

dt = 1x4 calendarDuration array
1mo Imo 1mo 1mo

Determine the number of days between each date.

dt

caldiff(t, "days*™)

dt = 71x4 calendarDuration array
31d 31d 28d 31d

Add a number of calendar months to the date, January 31, 2014, to create a sequence of
dates that fall on the last day of each month.

t = datetime(2014,1,31) + calmonths(0:11)

t

1x12 datetime array
31-Jan-2014 28-Feb-2014 31-Mar-2014 30-Apr-2014 31-May-2014 30-Jun-2014

Specify Length and Endpoints of Date or Duration Sequence

This example shows how to use the Iinspace function to create equally spaced datetime
or duration values between two specified endpoints.

Create a sequence of five equally spaced dates between April 14, 2014 and August 4,
2014. First, define the endpoints.

A
B

datetime(2014,04,14);
datetime(2014,08,04);

The third input to 1inspace specifies the number of linearly spaced points to generate
between the endpoints.

C

linspace(A,B,5)

C 1x5 datetime array

14-Apr-2014 12-May-2014 09-Jun-2014 07-Jul-2014 04-Aug-2014

Create a sequence of six equally spaced durations between 1 and 5.5 hours.

A = duration(1,0,0);

7-20

Generate Sequence of Dates and Time

B = duration(5,30,0);
C = linspace(A,B,6)
C = 1x6 duration array

01:00:00 01:54:00 02:48:00 03:42:00 04:36:00 05:30:00

Sequence of Datetime Values Using Calendar Rules

This example shows how to use the dateshift function to generate sequences of dates
and time where each instance obeys a rule relating to a calendar unit or a unit of time.
For instance, each datetime must occur at the beginning a month, on a particular day of
the week, or at the end of a minute. The resulting datetime values in the sequence are
not necessarily equally spaced.

Dates on Specific Day of Week

Generate a sequence of dates consisting of the next three occurrences of Monday. First,
define today's date.

tl = datetime("today”, "Format”, "dd-MMM-yyyy eee®)

tl = datetime
24-Feb-2017 Fri

The first input to dateshift is always the datetime array from which you want to
generate a sequence. Specify "dayofweek® as the second input to indicate that the
datetime values in the output sequence must fall on a specific day of the week. You can
specify the day of the week either by number or by name. For example, you can specify
Monday either as 2 or "Monday".

t = dateshift(tl, "dayofweek®,2,1:3)
t = 1x3 datetime array

27-Feb-2017 Mon 06-Mar-2017 Mon 13-Mar-2017 Mon
Dates at Start of Month

Generate a sequence of start-of-month dates beginning with April 1, 2014. Specify
"start” as the second input to dateshift to indicate that all datetime values in the
output sequence should fall at the start of a particular unit of time. The third input

7-21

7 Dates and Time

7-22

argument defines the unit of time, in this case, month. The last input to dateshift

can be an array of integer values that specifies how t1 should be shifted. In this case, O
corresponds to the start of the current month, and 4 corresponds to the start of the fourth
month from t1.

tl = datetime(2014,04,01);
t = dateshift(tl, "start”, "month”,0:4)

t = 1x5 datetime array
01-Apr-2014 01-May-2014 01-Jun-2014 01-Jul-2014 01-Aug-2014

Dates at End of Month

Generate a sequence of end-of-month dates beginning with April 1, 2014.

tl = datetime(2014,04,01);
t = dateshift(tl, "end”, "month",0:2)

t = 1x3 datetime array
30-Apr-2014 31-May-2014 30-Jun-2014

Determine the number of days between each date.
dt = caldiff(t, "days")

dt = 71x2 calendarDuration array
31d 30d

The dates are not equally spaced.
Other Units of Dates and Time

You can specify other units of time such as week, day, and hour.
tl = datetime("now")

tl = datetime
24-Feb-2017 13:13:12

-
1

dateshift(tl, “start”,“hour”,0:4)

r~+
I

1x5 datetime array

Generate Sequence of Dates and Time

24-Feb-2017 13:00:00 24-Feb-2017 14:00:00 24-Feb-2017 15:00:00 24-Feb-2017 16

Previous Occurences of Dates and Time

Generate a sequence of datetime values beginning with the previous hour. Negative
integers in the last input to dateshift correspond to datetime values earlier than t1.

t = dateshift(tl, "start”, "hour”,-1:1)

t = 1x3 datetime array
24-Feb-2017 12:00:00 24-Feb-2017 13:00:00 24-Feb-2017 14:00:00

See Also

dateshift | linspace

7-23

7 Dates and Time

Share Code and Data Across Locales

7-24

In this section...

“Write Locale-Independent Date and Time Code” on page 7-24
“Write Dates in Other Languages” on page 7-25
“Read Dates in Other Languages” on page 7-26

Write Locale-Independent Date and Time Code

Follow these best practices when sharing code that handles dates and time with
MATLAB® users in other locales. These practices ensure that the same code produces
the same output display and that output files containing dates and time are read
correctly on systems in different countries or with different language settings.

Create language-independent datetime values. That is, create datetime values that use
month numbers rather than month names, such as 01 instead of January. Avoid using
day of week names.

For example, do this:
t = datetime("today”, "Format®, "yyyy-MM-dd™)

t = datetime
2017-02-24

instead of this:
t = datetime("today”, "Format®, "eeee, dd-MMM-yyyy®™)

t = datetime
Friday, 24-Feb-2017

Display the hour using 24-hour clock notation rather than 12-hour clock notation. Use
the "HH" identifiers when specifying the display format for datetime values.

For example, do this:

t = datetime("now", “Format”®,“*HH:mm")

t datetime

Share Code and Data Across Locales

14:03

instead of this:

t = datetime("now”, "Format”,“hh:mm a")
t = datetime
02:03 PM

When specifying the display format for time zone information, use the Z or X identifiers
instead of the lowercase z to avoid the creation of time zone names that might not be
recognized in other languages or regions.

Assign a time zone to t.

t.TimeZone = “America/New_York";

Specify a language-independent display format that includes a time zone.
t.Format = “dd-MM-yyyy Z*°

t = datetime
24-02-2017 -0500

If you share files but not code, you do not need to write locale-independent code while you
work in MATLAB. However, when you write to a file, ensure that any text representing
dates and times is language-independent. Then, other MATLAB users can read the files
easily without having to specify a locale in which to interpret date and time data.

Write Dates in Other Languages

Specify an appropriate format for text representing dates and times when you use the
char or cel Istr functions. For example, convert two datetime values to a cell array of
character vectors using cel Istr. Specify the format and the locale to represent the day,
month, and year of each datetime value as text.

t = [datetime("today");datetime("tomorrow®)]
t = 2x1 datetime array

24-Feb-2017

25-Feb-2017

7-25

7 Dates and Time

7-26

S = cellstr(t,"dd. MMMM yyyy®,"de DE™)

S = 2x1 cell array
"24. Februar 2017°
"25. Februar 2017°

S is a cell array of character vectors representing dates in German. You can export S to a
text file to use with systems in the de_DE locale.

Read Dates in Other Languages

You can read text files containing dates and time in a language other than the language
that MATLAB uses, which depends on your system locale. Use the textscan or
readtable functions with the DateLocale name-value pair argument to specify the
locale in which the function interprets the dates in the file. In addition, you might need
to specify the character encoding of a file that contains characters that are not recognized
by your computer's default encoding.

* When reading text files using the textscan function, specify the file encoding when
opening the file with fopen. The encoding is the fourth input argument to fopen.

* When reading text files using the readtable function, use the Fi leEncoding name-
value pair argument to specify the character encoding associated with the file.

See Also

cellstr | char | datetime | readtable | textscan

Extract or Assign Date and Time Components of Datetime Array

Extract or Assign Date and Time Components of Datetime Array

This example shows two ways to extract date and time components from existing
datetime arrays: accessing the array properties or calling a function. Then, the example
shows how to modify the date and time components by modifying the array properties.

Access Properties to Retrieve Date and Time Component
Create a datetime array.
t = datetime("now") + calyears(0:2) + calmonths(0:2) + hours(20:20:60)

t

1x3 datetime array
25-Feb-2017 09:12:50 26-Mar-2018 05:12:50 27-Apr-2019 01:12:50

Get the year values of each datetime in the array. Use dot notation to access the Year
property of t.

t_years = t.Year

t_years

2017 2018 2019

The output, t_years, is a numeric array.

Get the month values of each datetime in t by accessing the Month property.
t_months = t.Month

t_months =
2 3 4
You can retrieve the day, hour, minute, and second components of each datetime in t by
accessing the Hour, Minute, and Second properties, respectively.
Use Functions to Retrieve Date and Time Component

Use the month function to get the month number for each datetime in t. Using functions
1s an alternate way to retrieve specific date or time components of t.

7-27

7 Dates and Time

7-28

3
1l

month(t)

Use the month function rather than the Month property to get the full month names of
each datetime in t.

m month(t, "name*®)

1x3 cell array
"February* "March*® "April*

m

You can retrieve the year, quarter, week, day, hour, minute, and second components
of each datetime in t using the year, quarter, week, hour, minute, and second
functions, respectively.

Get the week of year numbers for each datetime in t.

w = week(t)
w =

8 13 17

Get Multiple Date and Time Components

Use the ymd function to get the year, month, and day values of t as three separate
numeric arrays.

Ly.m,d] = ymd(t)
y =

2017 2018 2019

Extract or Assign Date and Time Components of Datetime Array

25 26 27

Use the hms function to get the hour, minute, and second values of t as three separate
numeric arrays.

[h.m,s] = hms(t)

h =

12 12 12

50.7740 50.7740 50.7740

Modify Date and Time Components

Assign new values to components in an existing datetime array by modifying the
properties of the array. Use dot notation to access a specific property.

Change the year number of all datetime values in t to 2014. Use dot notation to modify
the Year property.

t.Year = 2014

t = 1x3 datetime array
25-Feb-2014 09:12:50 26-Mar-2014 05:12:50 27-Apr-2014 01:12:50

Change the months of the three datetime values in t to January, February, and March,
respectively. You must specify the new value as a numeric array.

t_Month = [1,2,3]

t = 1x3 datetime array

7-29

7 Dates and Time

7-30

25-Jan-2014 09:12:50 26-Feb-2014 05:12:50 27-Mar-2014 01:12:50

Set the time zone of T by assigning a value to the TimeZone property.

t.TimeZone = “Europe/Berlin®;

Change the display format of t to display only the date, and not the time information.
t.Format = “dd-MMM-yyyy*®

t = 1x3 datetime array
25-Jan-2014 26-Feb-2014 27-Mar-2014

If you assign values to a datetime component that are outside the conventional range,
MATLAB® normalizes the components. The conventional range for day of month
numbers is from 1 to 31. Assign day values that exceed this range.

t.Day = [-1 1 32]

t = 1x3 datetime array
30-Dec-2013 01-Feb-2014 01-Apr-2014

The month and year numbers adjust so that all values remain within the conventional
range for each date component. In this case, January -1, 2014 converts to December 30,
2013.

See Also

datetime Properties | hms | week | ymd

Combine Date and Time from Separate Variables

Combine Date and Time from Separate Variables

This example shows how to read date and time data from a text file. Then, it shows how
to combine date and time information stored in separate variables into a single datetime
variable.

Create a space-delimited text file named schedule. txt that contains the following (to
create the file, use any text editor, and copy and paste):

Date Name Time

10.03.2015 Joe 14:31
10.03.2015 Bob 15:33
11.03.2015 Bob 11:29
12.03.2015 Kim 12:09
12.03.2015 Joe 13:05

Read the file using the readtable function. Use the %D conversion specifier to read the
first and third columns of data as datetime values.

T

T

readtable("schedule.txt","Format”, "%{dd.MM.uuuu}D %s %{HH:mm}D","Delimiter®,")

Date Name Time

10.03.2015 "Joe” 14:31
10.03.2015 "Bob* 15:33
11.03.2015 "Bob* 11:29
12.03.2015 “Kim*® 12:09
12.03.2015 "Joe” 13:05

readtable returns a table containing three variables.

Change the display format for the T.Date and T.Time variables to view both date and
time information. Since the data in the first column of the file ("Date") have no time
information, the time of the resulting datetime values in T.Date default to midnight.
Since the data in the third column of the file ("Time") have no associated date, the date of
the datetime values in T.Time defaults to the current date.

T.Date.Format
T.Time.Format

T

T

"dd.MM.uuuu HH:mm*;
"dd.MM.uuuu HH:mm*;

Date Name Time

7-31

7 Dates and Time

10.03.2015 00:00 "Joe* 12.12.2014 14:31
10.03.2015 00:00 "Bob* 12.12.2014 15:33
11.03.2015 00:00 "Bob* 12.12.2014 11:29
12.03.2015 00:00 "Kim*® 12.12.2014 12:09
12.03.2015 00:00 "Joe* 12.12.2014 13:05

Combine the date and time information from two different table variables by adding
T.Date and the time values in T.Time. Extract the time information from T.Time using
the timeofday function.

myDatetime = T.Date + timeofday(T.Time)

myDatetime =
10.03.2015 14:31
10.03.2015 15:33
11.03.2015 11:29
12.03.2015 12:09
12.03.2015 13:05

See Also
readtable | timeofday

7-32

Date and Time Arithmetic

Date and Time Arithmetic

This example shows how to add and subtract date and time values to calculate future
and past dates and elapsed durations in exact units or calendar units. You can add,
subtract, multiply, and divide date and time arrays in the same way that you use these
operators with other MATLAB® data types. However, there is some behavior that is
specific to dates and time.

Add and Subtract Durations to Datetime Array

Create a datetime scalar. By default, datetime arrays are not associated wtih a time
zone.

tl = datetime("now")

tl = datetime
24-Feb-2017 13:01:41

Find future points in time by adding a sequence of hours.
t2 = t1 + hours(1:3)

t2 = 1x3 datetime array
24-Feb-2017 14:01:41 24-Feb-2017 15:01:41 24-Feb-2017 16:01:41

Verify that the difference between each pair of datetime values in €2 is 1 hour.
dt = diff(t2)
dt = 71x2 duration array
01:00:00 01:00:00
di Ff returns durations in terms of exact numbers of hours, minutes, and seconds.
Subtract a sequence of minutes from a datetime to find past points in time.

t2 = t1 - minutes(20:10:40)

t2 = 1x3 datetime array
24-Feb-2017 12:41:41 24-Feb-2017 12:31:41 24-Feb-2017 12:21:41

7-33

7 Dates and Time

7-34

Add a numeric array to a datetime array. MATLAB® treats each value in the numeric
array as a number of exact, 24-hour days.

t©2 = t1 + [1:3]

t2 = 1x3 datetime array
25-Feb-2017 13:01:41 26-Feb-2017 13:01:41 27-Feb-2017 13:01:41

Add to Datetime with Time Zone

If you work with datetime values in different time zones, or if you want to account for
daylight saving time changes, work with datetime arrays that are associated with time
zones. Create a datetime scalar representing March 8, 2014 in New York.

tl = datetime(2014,3,8,0,0,0, TimeZone", "America/New_York")

tl = datetime
08-Mar-2014 00:00:00

Find future points in time by adding a sequence of fixed-length (24-hour) days.

t2

tl + days(0:2)

t2 = 1x3 datetime array
08-Mar-2014 00:00:00 09-Mar-2014 00:00:00 10-Mar-2014 01:00:00

Because a daylight saving time shift occurred on March 9, 2014, the third datetime in €2
does not occur at midnight.

Verify that the difference between each pair of datetime values in €2 is 24 hours.
dt = diff(t2)

dt = 7x2 duration array
24:00:00 24:00:00

You can add fixed-length durations in other units such as years, hours, minutes, and
seconds by adding the outputs of the years, hours, minutes, and seconds functions,
respectively.

Date and Time Arithmetic

To account for daylight saving time changes, you should work with calendar durations
instead of durations. Calendar durations account for daylight saving time shifts when
they are added to or subtracted from datetime values.

Add a number of calendar days to tl.
t3 = t1 + caldays(0:2)

t3 = 1x3 datetime array
08-Mar-2014 00:00:00 09-Mar-2014 00:00:00 10-Mar-2014 00:00:00

View that the difference between each pair of datetime values in t3 is not always 24
hours due to the daylight saving time shift that occurred on March 9.

dt

difF(t3)
dt = 7x2 duration array

24:00:00 23:00:00
Add Calendar Durations to Datetime Array
Add a number of calendar months to January 31, 2014.
tl = datetime(2014,1,31)
tl = datetime

31-Jan-2014

t2

tl + calmonths(1:4)

t2 = 1x4 datetime array
28-Feb-2014 31-Mar-2014 30-Apr-2014 31-May-2014

Each datetime in t2 occurs on the last day of each month.

Calculate the difference between each pair of datetime values in t2 in terms of a number
of calendar days using the caldiff function.

dt = caldiff(t2, "days”)

dt = 1x3 calendarDuration array
31d 30d 31d

7-35

7 Dates and Time

7-36

The number of days between successive pairs of datetime values in dt is not always the
same because different months consist of a different number of days.

Add a number of calendar years to January 31, 2014.
t2 = t1 + calyears(0:4)

t2 = 1x5 datetime array
31-Jan-2014 31-Jan-2015 31-Jan-2016 31-Jan-2017 31-Jan-2018

Calculate the difference between each pair of datetime values in €2 in terms of a number
of calendar days using the caldiff function.

dt = caldiff(t2, "days”)

dt = 71x4 calendarDuration array
365d 365d 366d 365d

The number of days between successive pairs of datetime values in dt is not always the
same because 2016 is a leap year and has 366 days.

You can use the calquarters, calweeks, and caldays functions to create arrays of
calendar quarters, calendar weeks, or calendar days that you add to or subtract from
datetime arrays.

Adding calendar durations is not commutative. When you add more than one
calendarDuration array to a datetime, MATLAB® adds them in the order in which
they appear in the command.

Add 3 calendar months followed by 30 calendar days to January 31, 2014.
t2 = datetime(2014,1,31) + calmonths(3) + caldays(30)

t2 = datetime
30-May-2014

First add 30 calendar days to the same date, and then add 3 calendar months. The result
is not the same because when you add a calendar duration to a datetime, the number of
days added depends on the original date.

Date and Time Arithmetic

t2 = datetime(2014,1,31) + caldays(30) + calmonths(3)
t2 = datetime
02-Jun-2014
Calendar Duration Arithmetic
Create two calendar durations and then find their sum.
dl = calyears(l) + calmonths(2) + caldays(20)
dl = calendarDuration

ly 2mo 20d

d2

calmonths(11) + caldays(23)

d2 = calendarDuration
11mo 23d

o
1

dl + d2

d = calendarDuration
2y 1mo 43d

When you sum two or more calendar durations, a number of months greater than 12
roll over to a number of years. However, a large number of days does not roll over to a
number of months, because different months consist of different numbers of days.

Increase d by multiplying it by a factor of 2. Calendar duration values must be integers,
so you can multiply them only by integer values.

2*d
ans = calendarDuration
4y 2mo 86d
Calculate Elapsed Time in Exact Units

Subtract one datetime array from another to calculate elapsed time in terms of an exact
number of hours, minutes, and seconds.

7-37

7 Dates and Time

7-38

Find the exact length of time between a sequence of datetime values and the start of the
previous day.

t2 = datetime("now") + caldays(1:3)
t2 = 1x3 datetime array
25-Feb-2017 13:01:42 26-Feb-2017 13:01:42 27-Feb-2017 13:01:42
tl = datetime(“yesterday®)
tl = datetime
23-Feb-2017
dt = €2 - t1

dt = 1x3 duration array
61:01:42 85:01:42 109:01:42

whos dt
Name Size Bytes Class Attributes
dt 1x3 40 duration

dt contains durations in the format, hours:minutes:seconds.

View the elapsed durations in units of days by changing the Format property of dt.
dt.Format = "d-

dt = 1x3 duration array
2.5428 days 3.5428 days 4.5428 days

Scale the duration values by multiplying dt by a factor of 1.2. Because durations have an
exact length, you can multiply and divide them by fractional values.

dt2 = 1.2*dt

dt2 = 1x3 duration array
3.0514 days 4_.2514 days 5.4514 days

Date and Time Arithmetic

Calculate Elapsed Time in Calendar Units

Use the between function to find the number of calendar years, months, and days
elapsed between two dates.

tl = datetime("today")
tl = datetime
24-Feb-2017
t2 = t1 + calmonths(0:2) + caldays(4)
t2 = 1x3 datetime array

28-Feb-2017 28-Mar-2017 28-Apr-2017

dt = between(tl,t2)

dt = 1x83 calendarDuration array
4d 1imo 4d 2mo 4d

See Also
between | caldiff | diff

7-39

7 Dates and Time

Compare Dates and Time

7-40

This example shows how to compare datetime and duration arrays. You can perform
an element-by-element comparison of values in two datetime arrays or two duration
arrays using relational operators, such as > and <.

Compare Datetime Arrays

Compare two datetime arrays. The arrays must be the same size or one can be a scalar.

A = datetime(2013,07,26) + calyears(0:2:6)
A = 1x4 datetime array
26-Jul-2013 26-Jul-2015 26-Jul-2017 26-Jul-2019
B = datetime(2014,06,01)
B = datetime
01-Jun-2014
A<B

ans = 1x4 logical array
1 0O O 0

The < operator returns logical 1 (true) where a datetime in A occurs before a datetime in
B.

Compare a datetime array to text representing a date.
A >= "September 26, 2014*

ans = 1x4 logical array
0 1 1 1

Comparisons of datetime arrays account for the time zone information of each array.

Compare September 1, 2014 at 4:00 p.m. in Los Angeles with 5:00 p.m. on the same day
in New York.

Compare Dates and Time

A = datetime(2014,09,01,16,0,0, TimeZone", "America/Los_Angeles”, ...
"Format”, "dd-MMM-yyyy HH:mm:ss Z%)
A = datetime

01-Sep-2014 16:00:00 -0700
B = datetime(2014,09,01,17,0,0, TimeZone", "America/New_York", ...
"Format”, "dd-MMM-yyyy HH:mm:ss Z%)
B = datetime
01-Sep-2014 17:00:00 -0400
A<B
ans = logical
0
4:00 p.m. in Los Angeles occurs after 5:00 p.m. on the same day in New York.
Compare Durations

Compare two duration arrays.

A = duration([2,30,30;3,15,0])
A = 2x1 duration array
02:30:30
03:15:00
B = duration([2,40,0;2,50,0])
B = 2x1 duration array
02:40:00
02:50:00
A >=B
ans = 2x1 logical array
0
1

7-41

7 Dates and Time

Compare a duration array to a numeric array. Elements in the numeric array are treated
as a number of fixed-length (24-hour) days.

A < [1; 1/24]
ans = 2x1 logical array

1
0

Determine if Dates and Time Are Contained Within an Interval

Use the 1sbetween function to determine whether values in a datetime array lie
within a closed interval.

Define endpoints of an interval.

tlower = datetime(2014,08,01)

tlower = datetime
01-Aug-2014
tupper = datetime(2014,09,01)

tupper = datetime
01-Sep-2014

Create a datetime array and determine whether the values lie within the interval
bounded by t1 and t2.

A = datetime(2014,08,21) + calweeks(0:2)
A = 1x3 datetime array

21-Aug-2014 28-Aug-2014 04-Sep-2014
tf = isbetween(A,tlower,tupper)

tf

1x3 logical array
1 1 0

See Also

isbetween

7-42

Compare Dates and Time

More About

. “Array Comparison with Relational Operators” on page 2-26

7-43

7 Dates and Time

Plot Dates and Durations

You can create plots of datetime and duration values with a variety of graphics functions.
You also can customize the axes, such as changing the format of the tick labels or
changing the axis limits.

Line Plot with Dates

Create a line plot with datetime values on the x-axis. Then, change the format of the tick
labels and the x-axis limits.

Create t as a sequence of dates and create y as random data. Plot the vectors using the
plot function.

datetime(2014,6,28) + calweeks(0:9);
rand(1,10);

t =
y =
plot(t,y);

7-44

Plot Dates and Durations

0.9

0.8

07T II'. /
I II", f/ \
0.6 | / .

IIII|
| |
". |
0.4

|
\)
0.3 F

\
0.2} I' '/

\ |
\
0.1 T
D i i i i
Jun 28 Jul 12 Jul 26 Aug 09

Aug 23

Sep 06
2014
By default, plot chooses tick mark locations based on the range of data. When you zoom
in and out of a plot, the tick labels automatically adjust to the new axis limits.

Change the x-axis limits. Also, change the format for the tick labels along the x-axis. For
a list of formatting options, see the xtickformat function.

xlim(datetime(2014,[7 8].,[12 23]))
xtickformat("dd-MMM-yyyy ™)

7-45

7 Dates and Time

0.8 f | / .
0.7 / 1
0.6 \ / 1

05 |/ \ 1
0.4 \ -
03 F \]
0.2 \ 1

011 b 7

D i i
12-Jul-2014 26-Jul-2014 09-Aug-2014 23-Aug-2014

Line Plot with Durations

Create a line plot with duration values on the x-axis. Then, change the format of the tick
labels and the x-axis limits.

Create t as seven linearly spaced duration values between 0 and 3 minutes. Create y as
a vector of random data. Plot the data.

t = 0:seconds(30):minutes(3);
y = rand(1,7);
plot(t,y);

7-46

Plot Dates and Durations

0.6 \ -

0.5 \ 1

0.4 \]

0.3t \ \]
\ \

02t H'%. |

011 7

View the x-axis limits. Since the duration tick labels are in terms of a single unit
(minutes), the limits are stored in terms of that unit.

xI = xhim

xl = 1x2 duration array
-0.075 min 3.075 min

Change the format for the duration tick labels to display in the form of a digital timer
that includes more than one unit. For a list of formatting options, see the xtickformat
function.

xtickformat("mm:ss*)

7-47

7 Dates and Time

7-48

0.9t A A
08" \ [N\
07t \ \
06 \

0.5 \ \

0.4 \
03t \ \
0.2 \ \

01t \

D i i i i i i i
00:00 00:30 01:00 01:30 02:00 02:30 03:00

View the x-axis limits again. Since the duration tick labels are now in terms of multiple
units, the limits are stored in units of 24-hour days.

xI = xhim

xl = 1x2 duration array
-0:04 03:04

Scatter Plot with Dates and Durations

Create a scatter plot with datetime or duration inputs using the scatter or scatter3
functions. For example, create a scatter plot with dates along the x-axis.

Plot Dates and Durations

t = datetime("today”) + caldays(1:100);
y = linspace(10,40,100) + 10*rand(1,100);
scatter(t,y)
501
o
45 ©
i o
Crﬁaogb
40 | ® 020 oo
§Y Qog
O
35 [Po B
oc’g
o
30 b O@é@ %D
gsan3Cﬁ3
OO
25 0%% o ©
d§§5 0% O
20 & 1
o oo
oo
D O
15 o0
o
1'} i i i i i
Feb Mar Apr May Jun Ju

2017

Plots that Support Dates and Durations

You can create other types of plots with datetime or duration values. These graphics

functions support datetime and duration values.

bar barh

plot plot3

7 Dates and Time

7-50

semi logx (x values must be numeric)

semi logy (y values must be numeric)

stem stairs
scatter scatter3
area mesh
surf surface
fill fill3
line text
histogram

See Also

datetime | plot | xtickformat

Core Functions Supporting Date and Time Arrays

Core Functions Supporting Date and Time Arrays

Many functions in MATLAB operate on date and time arrays in much the same way that

they operate on other arrays.

This table lists notable MATLAB functions that operate on datetime, duration, and
calendarDuration arrays in addition to other arrays.

size
length
ndims
numel

isrow
iscolumn

cat
horzcat
vertcat

permute
reshape
transpose
ctranspose

linspace

isequal
isequaln

€q
ne
It
le
ge
gt

sort
sortrows
issorted

intersect
ismember
setdiff
setxor
unique
union

abs
floor
ceil
round

min
max
mean
median
mode

plus
minus
uminus
times
rdivide
Idivide
mtimes
mrdivide
mldivide
diff
sum

char
string
cellstr

plot
plot3
scatter
scatter3
bar

barh
histogram

stem
stairs
area
mesh
surf
surface

semi logx
semilogy
fill
fill3
line
text

7-51

7 Dates and Time

Convert Between Datetime Arrays, Numbers, and Text

7-52

In this section...

“Overview” on page 7-52

“Convert Between Datetime and Character Vectors” on page 7-53
“Convert Between Datetime and String Arrays” on page 7-54
“Convert Between Datetime and Date Vectors” on page 7-55
“Convert Serial Date Numbers to Datetime” on page 7-56

“Convert Datetime Arrays to Numeric Values” on page 7-56

Overview

datetime is the best data type for representing points in time. datetime values have
flexible display formats and up to nanosecond precision, and can account for time zones,
daylight saving time, and leap seconds. However, if you work with code authored in
MATLAB R2014a or earlier, or if you share code with others who use such a version, you
might need to work with dates and time stored in one of these three formats:

* Date String — A character vector.

Example: Thursday, August 23, 2012 9:45:44.946 AM

+ Date Vector — A 1-by-6 numeric vector containing the year, month, day, hour,
minute, and second.

Example: [2012 8 23 9 45 44.946]

+ Serial Date Number — A single number equal to the number of days since January 0,
0000 in the proleptic ISO calendar. Serial date numbers are useful as inputs to some
MATLAB functions that do not accept the datetime or duration data types.

Example: 7.3510e+005

Date strings, vectors, and numbers can be stored as arrays of values. Store multiple date
strings in a cell array of character vectors, multiple date vectors in an m-by-6 matrix, and
multiple serial date numbers in a matrix.

You can convert any of these formats to a datetime array using the datetime function.
If your existing MATLAB code expects a serial date number or date vector, use the
datenum or datevec functions, respectively, to convert a datetime array to the

Convert Between Datetime Arrays, Numbers, and Text

expected data format. To convert a datetime array to character vectors, use the char or
cellstr functions.

Starting in R2016b, you also can convert a datetime array to a string array with the
string function.

Convert Between Datetime and Character Vectors

A date string can be a character vector composed of fields related to a specific date and/
or time. There are several ways to represent dates and times in text format. For example,
all of the following are character vectors representing August 23, 2010 at 04:35:42 PM:

"23-Aug-2010 04:35:06 PM*
"Wednesday, August 23*
"08/23/10 16:35"

"Aug 23 16:35:42.946"

A date string includes characters that separate the fields, such as the hyphen, space, and
colon used here:

d = "23-Aug-2010 16:35:42"

Convert one or more date strings to a datetime array using the datetime function. For
best performance, specify the format of the input date strings as an input to datetime.

Note: The specifiers that datetime uses to describe date and time formats differ from
the specifiers that the datestr, datevec, and datenum functions accept.

-
|

= datetime(d, " InputFormat®, "dd-MMM-yyyy HH:mm:ss®)

datetime
23-Aug-2010 16:35:42

Although the date string, d, and the datetime scalar, t, look similar, they are not equal.
View the size and data type of each variable.

whos d t

Name Size Bytes Class Attributes

7-53

7 Dates and Time

7-54

d 1x20 40 char
t 1x1 17 datetime

Convert a datetime array to a character vector using char or cel Istr. For example,
convert the current date and time to a timestamp to append to a file name.

t = datetime("now", "Format”, "yyyy-MM-dd" " T" "HHmmss ")

t =
datetime
2017-01-03T151105
S = char(t);

filename = ["myTest_",S]
filename =

"myTest_2017-01-03T151105"

Convert Between Datetime and String Arrays

Starting in R2016b, you can use the string function to create a string array. If a string
array contains date strings, then you can convert the string array to a datetime array
with the datetime function. Similarly, you can convert a datetime array to a string
array with the string function.

Convert a string array. MATLAB displays strings in double quotes. For best
performance, specify the format of the input date strings as an input to datetime.

str = string({"24-0ct-2016 11:58:17";
"19-Nov-2016 09:36:29";
"12-Dec-2016 10:09:06"})
str =

3x1 string array

'"'24-0ct-2016 11:58:17"
""19-Nov-2016 09:36:29"
""12-Dec-2016 10:09:06"

t = datetime(str, " InputFormat”, "dd-MMM-yyyy HH:mm:ss*®)

Convert Between Datetime Arrays, Numbers, and Text

3x1 datetime array

24-0ct-2016 11:58:17
19-Nov-2016 09:36:29
12-Dec-2016 10:09:06

Convert a datetime value to a string.

t = datetime("25-Dec-2016 06:12:34%);
str = string(t)

str =

"'25-Dec-2016 06:12:34"

Convert Between Datetime and Date Vectors

A date vector is a 1-by-6 vector of double-precision numbers. Elements of a date vector
are integer-valued, except for the seconds element, which can be fractional. Time values
are expressed in 24-hour notation. There is no AM or PM setting.

A date vector is arranged in the following order:

year month day hour minute second

The following date vector represents 10:45:07 AM on October 24, 2012:

[2012 10 24 10 45 07]

Convert one or more date vectors to a datetime array using the datetime function:

t

datetime([2012 10 24 10 45 07D
t =

datetime
24-0ct-2012 10:45:07

Instead of using datevec to extract components of datetime values, use functions such
as year, month, and day instead:

y = year(t)

7-55

7 Dates and Time

2012
Alternatively, access the corresponding property, such as t.Year for year values:
y = t.Year
y =

2012

Convert Serial Date Numbers to Datetime

A serial date number represents a calendar date as the number of days that has passed
since a fixed base date. In MATLAB, serial date number 1 is January 1, 0000.

Serial time can represent fractions of days beginning at midnight; for example, 6 p.m.
equals 0.75 serial days. So the character vector "31-0ct-2003, 6:00 PM" in MATLAB
is date number 731885.75.

Convert one or more serial date numbers to a datetime array using the datetime
function. Specify the type of date number that is being converted:

t

datetime(731885.75, "ConvertFrom®, "datenum®)
t =
datetime

31-0ct-2003 18:00:00

Convert Datetime Arrays to Numeric Values

Some MATLAB functions accept numeric data types but not datetime values as
inputs. To apply these functions to your date and time data, convert datetime values
to meaningful numeric values. Then, call the function. For example, the 1og function
accepts double inputs, but not datetime inputs. Suppose that you have a datetime
array of dates spanning the course of a research study or experiment.

t = datetime(2014,6,18) + calmonths(1:4)

t =

7-56

Convert Between Datetime Arrays, Numbers, and Text

1x4 datetime array
18-Jul-2014 18-Aug-2014 18-Sep-2014 18-0ct-2014

Subtract the origin value. For example, the origin value might be the starting day of an
experiment.

dt = t - datetime(2014,7,1)
dt =
1x4 duration array
408:00:00 1152:00:00 1896:00:00 2616:00:00

dtis a duration array. Convert dt to a double array of values in units of years,
days, hours, minutes, or seconds using the years, days, hours, minutes, or seconds
function, respectively.

X hours(dt)

X =
408 1152 1896 2616

Pass the double array as the input to the log function.

y = log(x)
y =

6.0113 7.0493 7.5475 7.8694
See Also

cellstr | char | datenum | datetime | datevec

More About
. “Represent Dates and Times in MATLAB” on page 7-2
. “Components of Dates and Time”

7-57

7 Dates and Time

Carryover in Date Vectors and Strings

If an element falls outside the conventional range, MATLAB adjusts both that date
vector element and the previous element. For example, if the minutes element is 70,
MATLAB adjusts the hours element by 1 and sets the minutes element to 10. If the
minutes element is -15, then MATLAB decreases the hours element by 1 and sets the
minutes element to 45. Month values are an exception. MATLAB sets month values less
than 1 to 1.

In the following example, the month element has a value of 22. MATLAB increments the
year value to 2010 and sets the month to October.

datestr([2009 22 03 00 00 00])

ans =
03-0ct-2010

The carrying forward of values also applies to time and day values in text representing
dates and times. For example, October 3, 2010 and September 33, 2010 are interpreted to
be the same date, and correspond to the same serial date number.

datenum("03-0ct-2010")

ans =
734414

datenum("33-Sep-20107)

ans =
734414

The following example takes the input month (07, or July), finds the last day of the
previous month (June 30), and subtracts the number of days in the field specifier (5 days)
from that date to yield a return date of June 25, 2010.

datestr([2010 07 -05 00 00 00])

ans =
25-Jun-2010

7-58

Converting Date Vector Returns Unexpected Output

Converting Date Vector Returns Unexpected Output

Because a date vector is a 1-by-6 vector of numbers, datestr might interpret your input
date vectors as vectors of serial date numbers, or vice versa, and return unexpected
output.

Consider a date vector that includes the year 3000. This year is outside the range of
years that datestr interprets as elements of date vectors. Therefore, the input is
interpreted as a 1-by-6 vector of serial date numbers:

datestr([3000 11 05 10 32 56])
ans =

18-Mar-0008
11-Jan-0000
05-Jan-0000
10-Jan-0000
01-Feb-0000
25-Feb-0000

Here datestr interprets 3000 as a serial date number, and converts it to the date string
"18-Mar-0008". Also, datestr converts the next five elements to date strings.

When converting such a date vector to a character vector, first convert it to a serial date
number using datenum. Then, convert the date number to a character vector using

datestr:

dn = datenum([3000 11 05 10 32 56]);
ds = datestr(dn)

ds =

05-Nov-3000 10:32:56

When converting dates to character vectors, datestr interprets input as either date
vectors or serial date numbers using a heuristic rule. Consider an m-by-6 matrix.
datestr interprets the matrix as m date vectors when:

* The first five columns contain integers.

* The absolute value of the sum of each row is in the range 1500-2500.

7-59

7 Dates and Time

7-60

If either condition is false, for any row, then datestr interprets the m-by-6 matrix as m-
by-6 serial date numbers.

Usually, dates with years in the range 1700-2300 are interpreted as date vectors.
However, datestr might interpret rows with month, day, hour, minute, or second values
outside their normal ranges as serial date numbers. For example, datestr correctly
interprets the following date vector for the year 2014:

datestr([2014 06 21 10 51 00])
ans =
21-Jun-2014 10:51:00

But given a day value outside the typical range (1-31), datestr returns a date for each
element of the vector:

datestr([2014 06 2110 10 51 00])
ans =

06-Jul-0005
06-Jan-0000
10-0ct-0005
10-Jan-0000
20-Feb-0000
00-Jan-0000

When you have a matrix of date vectors that datestr might interpret incorrectly as
serial date numbers, first convert the matrix to serial date numbers using datenum.
Then, use datestr to convert the date numbers.

When you have a matrix of serial date numbers that datestr might interpret as date
vectors, first convert the matrix to a column vector. Then, use datestr to convert the
column vector.

Categorical Arrays

“Create Categorical Arrays” on page 8-2

“Convert Text in Table Variables to Categorical” on page 8-7
“Plot Categorical Data” on page 8-12

“Compare Categorical Array Elements” on page 8-20

“Combine Categorical Arrays” on page 8-23

“Combine Categorical Arrays Using Multiplication” on page 8-27
“Access Data Using Categorical Arrays” on page 8-30

“Work with Protected Categorical Arrays” on page 8-38
“Advantages of Using Categorical Arrays” on page 8-43

“Ordinal Categorical Arrays” on page 8-46

“Core Functions Supporting Categorical Arrays” on page 8-50

8 Categorical Arrays

Create Categorical Arrays

This example shows how to create a categorical array. categorical is a data type for
storing data with values from a finite set of discrete categories. These categories can
have a natural order, but it is not required. A categorical array provides efficient storage
and convenient manipulation of data, while also maintaining meaningful names for the
values. Categorical arrays are often used in a table to define groups of rows.

By default, categorical arrays contain categories that have no mathematical ordering.
For example, the discrete set of pet categories {"dog® "cat” "bird"} hasno
meaningful mathematical ordering, so MATLAB® uses the alphabetical ordering
{"bird®" "cat" "dog-"}. Ordinal categorical arrays contain categories that have

a meaningful mathematical ordering. For example, the discrete set of size categories
{"small”, "medium®, "large”} hasthe mathematical ordering small < medium <
large.

When you create categorical arrays from cell arrays of character vectors or string arrays,
leading and trailing spaces are removed. For example, if you specify the text {' cat' 'dog '}
as categories, then when you convert them to categories they become {'cat' 'dog'}.

Create Categorical Array from Cell Array of Character Vectors

You can use the categorical function to create a categorical array from a numeric
array, logical array, string array, cell array of character vectors, or an existing
categorical array.

Create a 1-by-11 cell array of character vectors containing state names from New
England.

state = {"MA","ME","CT","VT","ME", "NH","VT","MA","NH","CT", "RI1"};
Convert the cell array, state, to a categorical array that has no mathematical order.
state = categorical(state)

state = 71x11 categorical array
MA ME CT VT ME NH VT MA NH CT

class(state)

ans =

Create Categorical Arrays

"categorical”

List the discrete categories in the variable state.
categories(state)

ans = 6x1 cell array
“cT"
“MA®
“ME"
“NH"
“RI"
"

The categories are listed in alphabetical order.
Create Ordinal Categorical Array from Cell Array of Character Vectors

Create a 1-by-8 cell array of character vectors containing the sizes of eight objects.

AllSizes = {"medium”,"large”,"small”,"small”, "medium®, ...
"large”, "medium®, "small"};

The cell array, AL1Sizes, has three distinct values: "large”, "medium®, and "small".
With the cell array of character vectors, there is no convenient way to indicate that
small < medium < large.

Convert the cell array, Al1Sizes, to an ordinal categorical array. Use valueset to
specify the values small, medium, and large, which define the categories. For an
ordinal categorical array, the first category specified is the smallest and the last category
1s the largest.

valueset = {"small”,"medium”, " large”};
sizeOrd = categorical (AllSizes,valueset, "Ordinal ", true)

sizeOrd = 71x8 categorical array
medium large small small medium large med ium

class(sizeOrd)

ans =
"categorical”

8 Categorical Arrays

The order of the values in the categorical array, sizeOrd, remains unchanged.

List the discrete categories in the categorical variable, sizeOrd.
categories(sizeOrd)
ans = 3x1 cell array

"small*

"medium*
"large*

The categories are listed in the specified order to match the mathematical ordering
small < medium < large.

Create Ordinal Categorical Array by Binning Numeric Data
Create a vector of 100 random numbers between zero and 50.
X = rand(100,1)*50;

Use the discretize function to create a categorical array by binning the values of x.
Put all values between zero and 15 in the first bin, all the values between 15 and 35 in
the second bin, and all the values between 35 and 50 in the third bin. Each bin includes
the left endpoint, but does not include the right endpoint.

catnames = {"small”,"medium”,"large};
binnedData = discretize(x,[0 15 35 50], "categorical”,catnames);

binnedData is a 100-by-1 ordinal categorical array with three categories, such that
small < medium < large.

Use the summary function to print the number of elements in each category.

summary(binnedData)
small 30
medium 35
large 35

Create Categorical Array from String Array

Starting in R2016b, you can create string arrays with the string function and convert
them to categorical array.

Create Categorical Arrays

Create a string array that contains names of planets.

str

str = 1x6 string array
"Earth" “Jupiter” "Neptune™ “"Jupiter”

Convert str to a categorical array.
planets = categorical(str)

planets = 1x6 categorical array
Earth Jupiter Neptune Jupiter

"Mars'*

Mars

string({"Earth", "Jupiter”, "Neptune®, "Jupiter”, "Mars", "Earth"})

"Earth"

Earth

Add missing elements to str and convert it to a categorical array. Where str has

missing values, planets has undefined values.
str(8) = "Mars”
str = 1x8 string array
"Earth" “"Jupiter” "Neptune" “Jupiter”
planets = categorical(str)

planets = 71x8 categorical array
Earth Jupiter Neptune Jupiter

See Also

categorical | categories | discretize | summary

Related Examples

""Mars"'

Mars

. “Convert Text in Table Variables to Categorical” on page 8-7

. “Access Data Using Categorical Arrays” on page 8-30

. “Compare Categorical Array Elements” on page 8-20

More About

. “Advantages of Using Categorical Arrays” on page 8-43

"Earth"

Earth

<missing>

<undefined:

8 Categorical Arrays

. “Ordinal Categorical Arrays” on page 8-46

8-6

Convert Text in Table Variables to Categorical

Convert Text in Table Variables to Categorical

This example shows how to convert a variable in a table from a cell array of character
vectors to a categorical array.

Load Sample Data and Create a Table

Load sample data gathered from 100 patients.

load patients

whos
Name Size Bytes Class Attributes
Age 100x1 800 double
Diastolic 100x1 800 double
Gender 100x1 12212 cell
Height 100x1 800 double
LastName 100x1 12416 cell
Location 100x1 15008 cell
SelfAssessedHeal thStatus 100x1 12340 cell
Smoker 100x1 100 logical
Systolic 100x1 800 double
Weight 100x1 800 double

Store the patient data from Age, Gender, Height, Weight,
SelfAssessedHealthStatus, and Location in a table. Use the unique identifiers in
the variable LastName as row names.

T = table(Age,Gender,Height,Weight, ...
SelfAssessedHeal thStatus, Location, ...
"RowNames*® ,LastName) ;

Convert Table Variables from Cell Arrays of Character Vectors to Categorical Arrays

The cell arrays of character vectors, Gender and Location, contain discrete sets of
unique values.

Convert Gender and Location to categorical arrays.

T.Gender = categorical(T.Gender);
T.Location = categorical(T.Location);

8 Categorical Arrays

The variable, Sel FAssessedHealthStatus, contains four unique values: Excellent,
Fair, Good, and Poor.

Convert Sel fFAssessedHeal thStatus to an ordinal categorical array, such that the
categories have the mathematical ordering Poor < Fair < Good < Excellent.

T.SelfAssessedHeal thStatus = categorical (T.SelfAssessedHealthStatus, ...
{"Poor","Fair","Good", "Excellent"}, "Ordinal ", true);

Print a Summary

View the data type, description, units, and other descriptive statistics for each variable
by using summary to summarize the table.

format compact

summary(T)
Variables:
Age: 100x1 double
Values:
Min 25
Median 39
Max 50
Gender: 100x1 categorical
Values:
Female 53
Male 47
Height: 100x1 double
Values:
Min 60
Median 67
Max 72
Weight: 100x1 double
Values:
Min 111
Median 142 .5
Max 202
SelfAssessedHealthStatus: 100x1 ordinal categorical
Values:
Poor 11
Fair 15
Good 40

Excellent 34
Location: 100x1 categorical

Convert Text in Table Variables to Categorical

Values:
County General Hospital 39
St. Mary s Medical Center 24
VA Hospital 37

The table variables Gender, Sel fAssessedHeal thStatus, and Location are
categorical arrays. The summary contains the counts of the number of elements in each
category. For example, the summary indicates that 53 of the 100 patients are female and
47 are male.

Select Data Based on Categories

Create a subtable, T1, containing the age, height, and weight of all female patients who
were observed at County General Hospital. You can easily create a logical vector based
on the values in the categorical arrays Gender and Location.

rows = T.Location=="County General Hospital® & T.Gender=="Female”;

rows is a 100-by-1 logical vector with logical true (1) for the table rows where the
gender is female and the location is County General Hospital.

Define the subset of variables.

vars = {"Age”,"Height","Weight"};

Use parentheses to create the subtable, T1.
Tl = T(rows,vars)

Tl = 19x3 table
Age Height Weight

Brown 49 64 119
Taylor 31 66 132
Anderson 45 68 128
Lee 44 66 146
Walker 28 65 123
Young 25 63 114
Campbell 37 65 135
Evans 39 62 121
Morris 43 64 135
Rivera 29 63 130
Richardson 30 67 141
Cox 28 66 111

8 Categorical Arrays

Torres 45 70 137
Peterson 32 60 136
Ramirez 48 64 137
Bennett 35 64 131
Patterson 37 65 120
Hughes 49 63 123
Bryant 48 66 134

A1is a 19-by-3 table.

Since ordinal categorical arrays have a mathematical ordering for their categories,
you can perform element-wise comparisons of them with relational operations, such as
greater than and less than.

Create a subtable, T2, of the gender, age, height, and weight of all patients who assessed
their health status as poor or fair.

First, define the subset of rows to include in table T2.

rows = T.SelfAssessedHealthStatus<="Fair";

Then, define the subset of variables to include in table T2.
vars = {"Gender","Age”, "Height", "Weight"};

Use parentheses to create the subtable T2.

T2 = T(rows,vars)

T2 = 26x4 table
Gender Age Height Weight

Johnson Male 43 69 163
Jones Female 40 67 133
Thomas Female 42 66 137
Jackson Male 25 71 174
Garcia Female 27 69 131
Rodriguez Female 39 64 117
Lewis Female 41 62 137
Lee Female 44 66 146
Hall Male 25 70 189
Hernandez Male 36 68 166
Lopez Female 40 66 137
Gonzalez Female 35 66 118
Mitchell Male 39 71 164

8-10

Convert Text in Table Variables to Categorical

Campbell Female 37 65 135
Parker Male 30 68 182
Stewart Male 49 68 170
Morris Female 43 64 135
Watson Female 40 64 127
Kelly Female 41 65 127
Price Male 31 72 178
Bennett Female 35 64 131
Wood Male 32 68 183
Patterson Female 37 65 120
Foster Female 30 70 124
Griffin Male 49 70 186
Hayes Male 48 66 177

T2 is a 26-by-4 table.

Related Examples

. “Create and Work with Tables” on page 9-2

. “Create Categorical Arrays” on page 8-2

. “Access Data in a Table” on page 9-33

. “Access Data Using Categorical Arrays” on page 8-30

More About

. “Advantages of Using Categorical Arrays” on page 8-43
. “Ordinal Categorical Arrays” on page 8-46

8-11

8 Categorical Arrays

Plot Categorical Data
This example shows how to plot data from a categorical array.
Load Sample Data

Load sample data gathered from 100 patients.

load patients

whos
Name Size Bytes Class Attributes
Age 100x1 800 double
Diastolic 100x1 800 double
Gender 100x1 12212 cell
Height 100x1 800 double
LastName 100x1 12416 cell
Location 100x1 15008 cell
SelfAssessedHeal thStatus 100x1 12340 cell
Smoker 100x1 100 logical
Systolic 100x1 800 double
Weight 100x1 800 double

Create Categorical Arrays from Cell Arrays of Character Vectors

The workspace variable, Location, is a cell array of character vectors that contains the
three unique medical facilities where patients were observed.

To access and compare data more easily, convert Location to a categorical array.

Location = categorical(Location);

Summarize the categorical array.

summary(Location)
County General Hospital 39
St. Mary"s Medical Center 24
VA Hospital 37

39 patients were observed at County General Hospital, 24 at St. Mary's Medical Center,
and 37 at the VA Hospital.

8-12

Plot Categorical Data

The workspace variable, Sel fAssessedHeal thStatus, contains four unique values,
Excellent, Fair, Good, and Poor.

Convert Sel FAssessedHeal thStatus to an ordinal categorical array, such that the
categories have the mathematical ordering Poor < Fair < Good < Excellent.

SelfAssessedHealthStatus = categorical (SelfAssessedHealthStatus, ...
{"Poor® "Fair®" "Good" "Excellent"},"Ordinal”,true);

Summarize the categorical array, Sel FAssessedHeal thStatus.

summary(SelfAssessedHeal thStatus)

Poor 11

Fair 15

Good 40

Excellent 34
Plot Histogram

Create a histogram bar plot directly from a categorical array.
figure

histogram(SelfAssessedHeal thStatus)
title("Self Assessed Health Status From 100 Patients®)

8-13

8 Categorical Arrays

8-14

Self Assessed Health Status From 100 Patients

Poor Fair Good Excellent

The function hist accepts the categorical array, Sel fAssessedHeal thStatus, and
plots the category counts for each of the four categories.

Create a histogram of the hospital location for only the patients who assessed their
health as Fair or Poor.

figure
histogram(Location(SelfAssessedHeal thStatus<="Fair"))
title("Location of Patients in Fair or Poor Health®)

Plot Categorical Data

12

Location of Patients in Fair or Poor Health

)
e}-‘h&

Create Pie Chart

Create a pie chart directly from a categorical array.

figure
pie(SelfAssessedHeal thStatus);
title("Self Assessed Health Status From 100 Patients®)

8-15

8 Categorical Arrays

8-16

Self Assessed Health Status From 100 Patients
Poor (11%)

Excellent (34%)
Fair (15%)

Good (40%)

The function pie accepts the categorical array, Sel FAssessedHealthStatus, and plots
a pie chart of the four categories.

Create Pareto Chart

Create a Pareto chart from the category counts for each of the four categories of
SelfAssessedHeal thStatus.

figure

A = countcats(SelfAssessedHeal thStatus);

C = categories(SelfAssessedHealthStatus);

pareto(A,C);

title("Self Assessed Health Status From 100 Patients®)

Plot Categorical Data

100

Good

.-"-F--

Self Assessed Health Status From 100 Patients

Poor

100%:

90%

80%

T0%

60%:

50%

40%:

30%

20%:

10%

0%

The first input argument to pareto must be a vector. If a categorical array is a matrix or
multidimensional array, reshape it into a vector before calling countcats and pareto.

Create Scatter Plot

Convert the cell array of character vectors to a categorical array.

Gender = categorical (Gender);

Summarize the categorical array, Gender.

summary(Gender)

Female

53

8-17

8 Categorical Arrays

8-18

Male 47
Gender is a 100-by-1 categorical array with two categories, Female and Male.

Use the categorical array, Gender, to access Weight and Height data for each gender
separately.

X1 = Weight(Gender=="Female®);
Y1 = Height(Gender=="Female®);
X2 = Weight(Gender=="Male");
Y2 = Height(Gender=="Male");

X1 and Y1 are 53-by-1 numeric arrays containing data from the female patients.
X2 and Y2 are 47-by-1 numeric arrays containing data from the male patients.

Create a scatter plot of height vs. weight. Indicate data from the female patients with a
circle and data from the male patients with a cross.

figure
hl = scatter(X1,Y1,"0");
hold on
h2 = scatter(X2,Y2,"x");

title("Height vs. Weight™)
xlabel ("Weight (lbs)™)
ylabel ("Height (in)")

Plot Categorical Data

Height (in)

Height vs. Weight
*

i2r e = ¥
* A O
70+ oo O * H Moo X
o * = ®oOAKE
68 o0 O O MM A
o O o ® o o® =
BEp O o0 O @ ®x X *
o0 OO0 OO
64 OO @D OO
O o Oo0 O
62 o aD
60 ' —— : : : : ! : :
110 120 130 140 150 160 170 180 190 200 210
Weight (Ibs)
See Also

bar | categorical | countcats | histogram | pie | rose | scatter | summary

Related Examples
. “Access Data Using Categorical Arrays” on page 8-30

8-19

8 Categorical Arrays

Compare Categorical Array Elements

This example shows how to use relational operations with a categorical array.
Create Categorical Array from Cell Array of Character Vectors

Create a 2-by-4 cell array of character vectors.

C = {"blue® "red® "green® "blue”;...
"blue® "green® "green” “"blue”};

colors = categorical(C)

colors = 2x4 categorical array
blue red green blue
blue green green blue

colors is a 2-by-4 categorical array.
List the categories of the categorical array.
categories(colors)
ans = 3x1 cell array
"blue*
"green”
"red”
Determine If Elements Are Equal
Use the relational operator, eq (==), to compare the first and second rows of colors.
colors(1,:) == colors(2,:)

ans = 1x4 logical array

1 0 1 1
Only the values in the second column differ between the rows.
Compare Entire Array to Character Vector

Compare the entire categorical array, colors, to the character vector "blue” to find the
location of all blue values.

8-20

Compare Categorical Array Elements

colors == "blue”
ans = 2x4 logical array

1 0 0 1
1 0 0 1

There are four blue entries in colors, one in each corner of the array.

Convert to an Ordinal Categorical Array

Add a mathematical ordering to the categories in colors. Specify the category order that
represents the ordering of color spectrum, red < green < blue.

colors = categorical(colors,{"red", "green® “blue"}, "Ordinal”,true)
colors = 2x4 categorical array

blue red green blue
blue green green blue

The elements in the categorical array remain the same.

List the discrete categories in colors.
categories(colors)
ans = 3x1 cell array

"red”

"green”
"blue*

Compare Elements Based on Order

Determine if elements in the first column of colors are greater than the elements in the
second column.

colors(:,1) > colors(:,2)
ans = 2x1 logical array

1
1

8-21

8 Categorical Arrays

8-22

Both values in the first column, blue, are greater than the corresponding values in the
second column, red and green.

Find all the elements in colors that are less than "blue®.
colors < "blue”
ans = 2x4 logical array

0 1 1 0
0 1 1 0

The function It (<) indicates the location of all green and red values with 1.

See Also

categorical | categories

Related Examples
. “Access Data Using Categorical Arrays” on page 8-30

More About

. “Relational Operations”
. “Advantages of Using Categorical Arrays” on page 8-43
. “Ordinal Categorical Arrays” on page 8-46

Combine Categorical Arrays

Combine Categorical Arrays

This example shows how to combine two categorical arrays.
Create Categorical Arrays

Create a categorical array, A, containing the preferred lunchtime beverage of 25 students
in classroom A.

A
A

gallery("integerdata®,3,[25,1],1);
categorical (A,1:3,{"milk" “water®™ "juice"});

Ais a 25-by-1 categorical array with three distinct categories: mi Ik, water, and juice.

Summarize the categorical array, A.

summary (A)
milk 8
water 8
Juice 9

Eight students in classroom A prefer milk, eight prefer water, and nine prefer juice.

Create another categorical array, B, containing the preferences of 28 students in
classroom B.

B
B

gallery("integerdata“®,3,[28,1],3);
categorical(B,1:3,{"milk" “water® "“juice"});

B is a 28-by-1 categorical array containing the same categories as A.

Summarize the categorical array, B.

summary(B)
milk 12
water 10
Juice 6

Twelve students in classroom B prefer milk, ten prefer water, and six prefer juice.
Concatenate Categorical Arrays

Concatenate the data from classrooms A and B into a single categorical array, Groupl.

8-23

8 Categorical Arrays

8-24

Groupl = [A;B];

Summarize the categorical array, Groupl

summary(Groupl)
mi Ik 20
water 18
Juice 15

Groupl is a 53-by-1 categorical array with three categories: mi Ik, water, and juice.
Create Categorical Array with Different Categories

Create a categorical array, Group2, containing data from 50 students who were given the
additional beverage option of soda.

Group2
Group2

gallery(integerdata“®,4,[50,1],2);
categorical (Group2,1:4,{"juice® "milk" "soda”" “water"});

Summarize the categorical array, Group2.

summary(Group?2)
Juice 18
milk 10
soda 13
water 9

Group2 is a 50-by-1 categorical array with four categories: Juice, milk, soda, and
water.

Concatenate Arrays with Different Categories
Concatenate the data from Groupl and Group?2.
students = [Groupl;Group2];

Summarize the resulting categorical array, students.

summary(students)
mi Ik 30
water 27
Juice 33
soda 13

Combine Categorical Arrays

Concatenation appends the categories exclusive to the second input, soda, to the end of
the list of categories from the first input, mi Ik, water, juice, soda.

Use reordercats to change the order of the categories in the categorical array,
students.

students = reordercats(students,{"juice”,"milk", "water”,"soda"});

categories(students)
ans = 4x1 cell array
"juice”
"milk*
"water"
"soda*

Union of Categorical Arrays

Use the function union to find the unique responses from Groupl and Group2.

C union(Groupl,Group2)

C = 4x1 categorical array
milk
water
Juice
soda

union returns the combined values from Groupl and Group2 with no repetitions. In this
case, C is equivalent to the categories of the concatenation, students.

All of the categorical arrays in this example were nonordinal. To combine ordinal
categorical arrays, they must have the same sets of categories including their order.

See Also

cat | categorical | categories | horzcat | summary | union | vertcat

Related Examples
. “Create Categorical Arrays” on page 8-2

. “Combine Categorical Arrays Using Multiplication” on page 8-27

8-25

8 Categorical Arrays

. “Convert Text in Table Variables to Categorical” on page 8-7
. “Access Data Using Categorical Arrays” on page 8-30

More About
. “Ordinal Categorical Arrays” on page 8-46

8-26

Combine Categorical Arrays Using Multiplication

Combine Categorical Arrays Using Multiplication

This example shows how to use the times function to combine categorical arrays,
including ordinal categorical arrays and arrays with undefined elements. When you call
times on two categorical arrays, the output is a categorical array with new categories.
The set of new categories is the set of all the ordered pairs created from the categories of
the input arrays, or the Cartesian product. times forms each element of the output array
as the ordered pair of the corresponding elements of the input arrays. The output array
has the same size as the input arrays.

Combine Two Categorical Arrays

Combine two categorical arrays using times. The input arrays must have the same
number of elements, but can have different numbers of categories.

A = categorical({"blue”,"red", "green"});
B = categorical({"+","-","+"});
C=A.*B

C = 1x3 categorical array

blue + red - green +

Cartesian Product of Categories

Show the categories of C. The categories are all the ordered pairs that can be created
from the categories of A and B, also known as the Cartesian product.

categories(C)

ans = 6x1 cell array
"blue +*
"blue -*
"green +"
"green -"
"red +°
"red -

As a consequence, A.*B does not equal B.*A.
D = B.*A

D

1x3 categorical array

8-27

8 Categorical Arrays

+ blue - red + green

categories(D)

ans = 6x1 cell array
"+ blue*®
"+ green”
"+ red”
"~ blue*
- green”
- red”

Multiplication with Undefined Elements

Combine two categorical arrays. If either A or B have an undefined element, the
corresponding element of C is undefined.

A = categorical({"blue”, "red", "green”, “"black"});
B = categorical({"+","-","+","-"});

A = removecats(A,{"black"});

C=A.*B

C = 1x4 categorical array

blue + red - green + <undefined>

Cartesian Product of Ordinal Categorical Arrays

Combine two ordinal categorical arrays. C is an ordinal categorical array only if A and
B are both ordinal. The ordering of the categories of C follows from the orderings of the
input categorical arrays.

A = categorical({"blue”,"red", "green"},{"green”, "red”,"blue”}, "Ordinal ", true);
B = categorical({"+","-","+"},"0Ordinal " ,true);

C = A.*B;

categories(C)

ans = 6x1 cell array
"green +*
"green -*
"red +°
"red -"°
"blue +*

8-28

Combine Categorical Arrays Using Multiplication

"blue -*

See Also

categorical | categories | summary | times

Related Examples

“Create Categorical Arrays” on page 8-2

“Combine Categorical Arrays” on page 8-23

“Access Data Using Categorical Arrays” on page 8-30

More About

“Ordinal Categorical Arrays” on page 8-46

8-29

8 Categorical Arrays

Access Data Using Categorical Arrays

8-30

In this section...

“Select Data By Category” on page 8-30
“Common Ways to Access Data Using Categorical Arrays” on page 8-30

Select Data By Category

Selecting data based on its values is often useful. This type of data selection can involve
creating a logical vector based on values in one variable, and then using that logical
vector to select a subset of values in other variables. You can create a logical vector for
selecting data by finding values in a numeric array that fall within a certain range.
Additionally, you can create the logical vector by finding specific discrete values. When
using categorical arrays, you can easily:

+ Select elements from particular categories. For categorical arrays, use the
logical operators == or ~= to select data that is in, or not in, a particular category. To
select data in a particular group of categories, use the ismember function.

For ordinal categorical arrays, use inequalities >, >=, <, or <= to find data in
categories above or below a particular category.

* Delete data that is in a particular category. Use logical operators to include or
exclude data from particular categories.

* Find elements that are not in a defined category. Categorical arrays indicate
which elements do not belong to a defined category by <undefined>. Use the
isundefined function to find observations without a defined value.

Common Ways to Access Data Using Categorical Arrays

This example shows how to index and search using categorical arrays. You can access
data using categorical arrays stored within a table in a similar manner.

Load Sample Data
Load sample data gathered from 100 patients.

load patients
whos

Access Data Using Categorical Arrays

Name Size Bytes Class Attributes
Age 100x1 800 double
Diastolic 100x1 800 double
Gender 100x1 12212 cell
Height 100x1 800 double
LastName 100x1 12416 cell
Location 100x1 15008 cell
SelfAssessedHealthStatus 100x1 12340 cell
Smoker 100x1 100 logical
Systolic 100x1 800 double
Weight 100x1 800 double

Create Categorical Arrays from Cell Arrays of Character Vectors

Gender and Location contain data that belong in categories. Each cell array contains
character vectors taken from a small set of unique values (indicating two genders and
three locations respectively). Convert Gender and Location to categorical arrays.

Gender = categorical (Gender);
Location = categorical(Location);

Search for Members of a Single Category

For categorical arrays, you can use the logical operators == and ~= to find the data that
1s in, or not in, a particular category.

Determine if there are any patients observed at the location, "Rampart General
Hospital-.

any(Location=="Rampart General Hospital")
ans = logical
0
There are no patients observed at Rampart General Hospital.
Search for Members of a Group of Categories

You can use ismember to find data in a particular group of categories. Create a logical
vector for the patients observed at County General Hospital or VA Hospital.

VA _CountyGenlndex = ...

8-31

8 Categorical Arrays

8-32

ismember(Location,{"County General Hospital®,"VA Hospital®});

VA _CountyGenlndex is a 100-by-1 logical array containing logical true (1) for each
element in the categorical array Location that is a member of the category County
General Hospital or VA Hospital. The output, VA_CountyGenlndex contains 76
nonzero elements.

Use the logical vector, VA _CountyGenlndex to select the LastName of the patients
observed at either County General Hospital or VA Hospital.

VA_CountyGenPatients = LastName(VA_CountyGenlndex);
VA _CountyGenPatients is a 76-by-1 cell array of character vectors.
Select Elements in a Particular Category to Plot

Use the summary function to print a summary containing the category names and the
number of elements in each category.

summary(Location)
County General Hospital 39
St. Mary"s Medical Center 24
VA Hospital 37

Location is a 100-by-1 categorical array with three categories. County General
Hospital occurs in 39 elements, St. Mary s Medical Center in 24 elements, and
VA Hospital in 37 elements.

Use the summary function to print a summary of Gender.

summary(Gender)
Female 53
Male 47

Gender is a 100-by-1 categorical array with two categories. Female occurs in 53
elements and Male occurs in 47 elements.

Use logical operator == to access the age of only the female patients. Then plot a
histogram of this data.

figure()

Access Data Using Categorical Arrays

histogram(Age(Gender=="Female®))
title("Age of Female Patients®)

Age of Female Patients

histogram(Age(Gender=="Female ")) plots the age data for the 53 female patients.
Delete Data from a Particular Category

You can use logical operators to include or exclude data from particular categories. Delete
all patients observed at VA Hospital from the workspace variables, Age and Location.

Age = Age(Location~="VA Hospital®);
Location = Location(Location~="VA Hospital®);

Now, Age is a 63-by-1 numeric array, and Location is a 63-by-1 categorical array.

8-33

8 Categorical Arrays

List the categories of Location, as well as the number of elements in each category.

summary(Location)
County General Hospital 39
St. Mary"s Medical Center 24
VA Hospital 0

The patients observed at VA Hospital are deleted from Location, but VA Hospital is
still a category.

Use the removecats function to remove VA Hospital from the categories of Location.
Location = removecats(Location, "VA Hospital®);

Verify that the category, VA Hospital, was removed.

categories(Location)

ans = 2x1 cell array

"County General Hospital®
"St. Mary®s Medical Center-

Location is a 63-by-1 categorical array that has two categories.

Delete Element

You can delete elements by indexing. For example, you can remove the first element of
Location by selecting the rest of the elements with Location(2:end). However, an
easier way to delete elements is to use [].

Location(1) = [];

summary(Location)
County General Hospital 38
St. Mary"s Medical Center 24

Location is a 62-by-1 categorical array that has two categories. Deleting the first
element has no effect on other elements from the same category and does not delete the
category itself.

Check for Undefined Data

Remove the category County General Hospital from Location.

8-34

Access Data Using Categorical Arrays

Location = removecats(Location, "County General Hospital®);

Display the first eight elements of the categorical array, Location.
Location(1:8)

ans = 8x1 categorical array
St. Mary®"s Medical Center
<undefined>
St. Mary®"s Medical Center
St. Mary®"s Medical Center
<undefined>
<undefined>
St. Mary®"s Medical Center
St. Mary®"s Medical Center

After removing the category, County General Hospital, elements that previously
belonged to that category no longer belong to any category defined for Location.
Categorical arrays denote these elements as undefined.

Use the function isundefined to find observations that do not belong to any category.

undefinedlndex = isundefined(Location);

undefinedIndex is a 62-by-1 categorical array containing logical true (1) for all
undefined elements in Location.

Set Undefined Elements

Use the summary function to print the number of undefined elements in Location.

summary(Location)
St. Mary®"s Medical Center 24
<undefined> 38

The first element of Location belongs to the category, St. Mary®"s Medical Center.
Set the first element to be undefined so that it no longer belongs to any category.

Location(l) = "<undefined>";

summary(Location)
St. Mary"s Medical Center 23
<undefined> 39

8-35

8 Categorical Arrays

8-36

You can make selected elements undefined without removing a category or changing
the categories of other elements. Set elements to be undefined to indicate elements with
values that are unknown.

Preallocate Categorical Arrays with Undefined Elements

You can use undefined elements to preallocate the size of a categorical array for better
performance. Create a categorical array that has elements with known locations only.

definedlndex = ~isundefined(Location);
newLocation = Location(definedIndex);
summary(newLocation)

St. Mary"s Medical Center 23

Expand the size of newLocation so that it is a 200-by-1 categorical array. Set the
last new element to be undefined. All of the other new elements also are set to be
undefined. The 23 original elements keep the values they had.

newLocation(200) = "<undefined>";
summary(newLocation)

St. Mary®"s Medical Center 23
<undefined> 177

newLocation has room for values you plan to store in the array later.

See Also

any | categorical | categories | histogram | isundefined | removecats |
summary

Related Examples

. “Create Categorical Arrays” on page 8-2

. “Convert Text in Table Variables to Categorical” on page 8-7
. “Plot Categorical Data” on page 8-12

. “Compare Categorical Array Elements” on page 8-20

. “Work with Protected Categorical Arrays” on page 8-38

More About
. “Advantages of Using Categorical Arrays” on page 8-43

Access Data Using Categorical Arrays

“Ordinal Categorical Arrays” on page 8-46

8-37

8 Categorical Arrays

Work with Protected Categorical Arrays

8-38

This example shows how to work with a categorical array with protected categories.

When you create a categorical array with the categorical function, you have the option
of specifying whether or not the categories are protected. Ordinal categorical arrays
always have protected categories, but you also can create a nonordinal categorical array
that is protected using the "Protected” , true name-value pair argument.

When you assign values that are not in the array's list of categories, the array updates
automatically so that its list of categories includes the new values. Similarly, you can
combine (nonordinal) categorical arrays that have different categories. The categories in
the result include the categories from both arrays.

When you assign new values to a protected categorical array, the values must belong to
one of the existing categories. Similarly, you can only combine protected arrays that have
the same categories.

+ If you want to combine two nonordinal categorical arrays that have protected
categories, they must have the same categories, but the order does not matter. The
resulting categorical array uses the category order from the first array.

+ If you want to combine two ordinal categorical array (that always have protected
categories), they must have the same categories, including their order.

To add new categories to the array, you must use the function addcats.
Create Ordinal Categorical Array

Create a categorical array containing the sizes of 10 objects. Use the names small,
medium, and large for the values *S*", *M", and "L".

A

categorical ({"M";"L";"S";"S";"M";"L";"M";"L";"M";"S"},...
{"s","M","L"},{"small”", "medium®, " large"}, "Ordinal " ,true)

A = 10x1 categorical array
medium
large
small
small
medium
large
medium

Work with Protected Categorical Arrays

large
medium
small

A1is a 10-by-1 categorical array.

Display the categories of A.
categories(h)

ans = 3x1 cell array
"small*
"medium*
"large*

Verify That Categories Are Protected

When you create an ordinal categorical array, the categories are always protected.

Use the isprotected function to verify that the categories of A are protected.
tf = isprotected(Ah)

tf

Iogical

The categories of A are protected.
Assign Value in New Category

If you try to assign a new value that does not belong to one of the existing categories,
then MATLAB® returns an error. For example, you cannot assign the value "xlarge” to
the categorical array, as in the expression A(2) = "xlarge”, because xlarge is not a
category of A. Instead, MATLAB® returns the error:

Error using categorical/subsasgn (line 68)
Cannot add a new category "xlarge”™ to this categorical array
because i1ts categories are protected. Use ADDCATS to

add the new category.

8-39

8 Categorical Arrays

To add a new category for xlarge, use the addcats function. Since A is ordinal you must
specify the order for the new category.

A = addcats(A, "xlarge”, "After”, "large”);
Now, assign a value for "xlarge”, since it has an existing category.
A(2) = "xlarge”

A = 10x1 categorical array
medium
xlarge
small
small
medium
large
medium
large
medium
small

Ais now a 10-by-1 categorical array with four categories, such that small < medium <
large < xlarge.

Combine Two Ordinal Categorical Arrays
Create another ordinal categorical array, B, containing the sizes of five items.
B = categorical([2;1;1;2;2],1:2,{"xsmall","small"}, "Ordinal”,true)
B = 5x71 categorical array

small

xsmall

xsmall

small
small

B is a 5-by-1 categorical array with two categories such that xsmall < small.

To combine two ordinal categorical arrays (which always have protected categories), they
must have the same categories and the categories must be in the same order.

Add the category "xsmall” to A before the category "small*”.

8-40

Work with Protected Categorical Arrays

A = addcats(A, "xsmall*,"Before”,"small™);
categories(A)

ans = 5x1 cell array
"xsmall*
"small*
"medium®
"large*
"xlarge”

Add the categories {"medium®, "large”, "xlarge"} to B after the category "small".
B = addcats(B,{"medium”,"large”,"xlarge"}, "After”,"small™);
categories(B)
ans = 5x1 cell array
"xsmall*
“small*
"medium*

"large*
"xlarge®

The categories of A and B are now the same including their order.

Vertically concatenate A and B.

C = [A;B]

C 15x1 categorical array
medium
xlarge
small
small
medium
large
medium
large
medium
small
small
xsmall

8-41

8 Categorical Arrays

xsmall
small
small

The values from B are appended to the values from A.

List the categories of C.
categories(C)

ans = 5x1 cell array
"xsmall*
“small*
"medium*
"large*
xlarge

C is a 16-by-1 ordinal categorical array with five categories, such that xsmall < small
< medium < large < xlarge.

See Also

addcats | categorical | categories | isordinal | isprotected | summary

Related Examples

. “Create Categorical Arrays” on page 8-2

. “Convert Text in Table Variables to Categorical” on page 8-7

. “Access Data Using Categorical Arrays” on page 8-30

. “Combine Categorical Arrays” on page 8-23

. “Combine Categorical Arrays Using Multiplication” on page 8-27

More About

. “Ordinal Categorical Arrays” on page 8-46

8-42

Advantages of Using Categorical Arrays

Advantages of Using Categorical Arrays

In this section...

“Natural Representation of Categorical Data” on page 8-43
“Mathematical Ordering for Character Vectors” on page 8-43

“Reduce Memory Requirements” on page 8-43

Natural Representation of Categorical Data

categorical is a data type to store data with values from a finite set of discrete
categories. One common alternative to using categorical arrays is to use character arrays
or cell arrays of character vectors. To compare values in character arrays and cell arrays
of character vectors, you must use strcmp which can be cumbersome. With categorical
arrays, you can use the logical operator eq (==) to compare elements in the same way
that you compare numeric arrays. The other common alternative to using categorical
arrays is to store categorical data using integers in numeric arrays. Using numeric
arrays loses all the useful descriptive information from the category names, and also
tends to suggest that the integer values have their usual numeric meaning, which, for
categorical data, they do not.

Mathematical Ordering for Character Vectors

Categorical arrays are convenient and memory efficient containers for nonnumeric data
with values from a finite set of discrete categories. They are especially useful when the
categories have a meaningful mathematical ordering, such as an array with entries from
the discrete set of categories {"small”, "medium®, " large”} where small < medium
< large.

An ordering other than alphabetical order is not possible with character arrays or cell
arrays of character vectors. Thus, inequality comparisons, such as greater and less than,
are not possible. With categorical arrays, you can use relational operations to test for
equality and perform element-wise comparisons that have a meaningful mathematical
ordering.

Reduce Memory Requirements

This example shows how to compare the memory required to store data as a cell array
of character vectors versus a categorical array. Categorical arrays have categories that

8-43

8 Categorical Arrays

are defined as character vectors, which can be costly to store and manipulate in a cell
array of character vectors or char array. Categorical arrays store only one copy of each
category name, often reducing the amount of memory required to store the array.

Create a sample cell array of character vectors.
state = [repmat({"MA"},25,1);repmat({"NY"},25,1); ...
repmat({"CA"},50,1);. ..
repmat({"MA"},25,1) ;repmat({"NY"},25,1)];
Display information about the variable state.
whos state
Name Size Bytes Class Attributes
state 150x1 17400 cell

The variable state is a cell array of character vectors requiring 17,400 bytes of memory.

Convert state to a categorical array.
state = categorical(state);
Display the discrete categories in the variable state.
categories(state)
ans = 3x1 cell array
“CA"

“MA®
“NY"

state contains 150 elements, but only three distinct categories.

Display information about the variable state.
whos state

Name Size Bytes Class Attributes
state 150x1 500 categorical

There is a significant reduction in the memory required to store the variable.

8-44

Advantages of Using Categorical Arrays

See Also

categorical | categories

Related Examples

“Create Categorical Arrays” on page 8-2

“Convert Text in Table Variables to Categorical” on page 8-7

“Compare Categorical Array Elements” on page 8-20

“Access Data Using Categorical Arrays” on page 8-30

More About

. “Ordinal Categorical Arrays” on page 8-46

8-45

8 Categorical Arrays

Ordinal Categorical Arrays

8-46

In this section...

“Order of Categories” on page 8-46
“How to Create Ordinal Categorical Arrays” on page 8-46
“Working with Ordinal Categorical Arrays” on page 8-48

Order of Categories

categorical is a data type to store data with values from a finite set of discrete
categories, which can have a natural order. You can specify and rearrange the order

of categories in all categorical arrays. However, you only can treat ordinal categorical
arrays as having a mathematical ordering to their categories. Use an ordinal categorical
array if you want to use the functions min, max, or relational operations, such as greater
than and less than.

The discrete set of pet categories {"dog® "cat” "bird"} has no meaningful
mathematical ordering. You are free to use any category order and the
meaning of the associated data does not change. For example, pets =
categorical({"bird","cat","dog", "dog", "cat"}) creates a categorical array
and the categories are listed in alphabetical order, {"bird®™ "cat®" "dog"}. You can
choose to specify or change the order of the categories to {"dog® "cat" "bird"} and

the meaning of the data does not change.

ordinal categorical arrays contain categories that have a meaningful mathematical
ordering. For example, the discrete set of size categories {"small®, “"medium”,
"large”} has the mathematical ordering small < medium < large. The first
category listed is the smallest and the last category is the largest. The order of the
categories in an ordinal categorical array affects the result from relational comparisons of
ordinal categorical arrays.

How to Create Ordinal Categorical Arrays

This example shows how to create an ordinal categorical array using the categorical
function with the "Ordinal ", true name-value pair argument.

Ordinal Categorical Arrays

Ordinal Categorical Array from a Cell Array of Character Vectors

Create an ordinal categorical array, sizes, from a cell array of character vectors, A. Use
valueset, specified as a vector of unique values, to define the categories for sizes.

A = {"medium® "large®;"small® "medium®; "large® “"small"};
valueset = {"small”, "medium®, "“large”};

sizes = categorical(A,valueset, "Ordinal”,true)

sizes = 3x2 categorical array

medium large
small medium
large small

sizes is 3-by-2 ordinal categorical array with three categories such that small <
medium < large. The order of the values in valueset becomes the order of the
categories of sizes.

Ordinal Categorical Array from Integers

Create an equivalent categorical array from an array of integers. Use the values 1, 2, and
3 to define the categories small, medium, and large, respectively.

A2 = [2 3; 1 2; 3 1];
valueset = 1:3;
catnames = {"small®,"medium”,"large};

sizes2 = categorical (A2,valueset,catnames, "Ordinal " ,true)

sizes2 = 3x2 categorical array

medium large
small medium
large small

Compare sizes and sizes2
isequal (sizes,sizes?2)

ans = logical
1

8-47

8 Categorical Arrays

8-48

sizes and sizes2 are equivalent categorical arrays with the same ordering of
categories.

Convert a Categorical Array from Nonordinal to Ordinal
Create a nonordinal categorical array from the cell array of character vectors, A.
sizes3 = categorical(A)

sizes3 = 3x2 categorical array

medium large
small medium
large small

Determine if the categorical array is ordinal.
isordinal (sizes3)

ans = logical
0

sizes3 is a nonordinal categorical array with three categories,

{"large”, "medium”, "small "}. The categories of sizes3 are the sorted unique values
from A. You must use the input argument, valueset, to specify a different category
order.

Convert sizes3 to an ordinal categorical array, such that small < medium < large.
sizes3 = categorical(sizes3,{"small”,"medium®, " large”}, "Ordinal” ,true);

sizes3 is now a 3-by-2 ordinal categorical array equivalent to sizes and sizes2.

Working with Ordinal Categorical Arrays

In order to combine or compare two categorical arrays, the sets of categories for both
input arrays must be identical, including their order. Furthermore, ordinal categorical
arrays are always protected. Therefore, when you assign values to an ordinal categorical
array, the values must belong to one of the existing categories. For more information see
“Work with Protected Categorical Arrays” on page 8-38.

See Also

categorical | categories | isequal | isordinal

Ordinal Categorical Arrays

Related Examples

. “Create Categorical Arrays” on page 8-2

“Convert Text in Table Variables to Categorical” on page 8-7

“Compare Categorical Array Elements” on page 8-20

“Access Data Using Categorical Arrays” on page 8-30

More About

“Advantages of Using Categorical Arrays” on page 8-43

8-49

8 Categorical Arrays

Core Functions Supporting Categorical Arrays

Many functions in MATLAB operate on categorical arrays in much the same way

that they operate on other arrays. A few of these functions might exhibit special
behavior when operating on a categorical array. If multiple input arguments are ordinal
categorical arrays, the function often requires that they have the same set of categories,
including order. Furthermore, a few functions, such as max and gt, require that the
input categorical arrays are ordinal.

The following table lists notable MATLAB functions that operate on categorical arrays in
addition to other arrays.

size isequal intersect plot double
length isequaln ismember plot3 single
ndims setdiff scatter int8
numel €eq setxor scatter3 intl6
ne unique bar int32
isrow It union barh int64
iscolumn le histogram uints
ge times uintl6
B gt pie uint32
horzcat) sort rosestem uint64
vertcat min sortrows stairs char
max issorted area string
median mesh cellstr
mode permute surf
reshape surface
transpose
ctranspose semi |ogx
semi logy
fill
fill3
line
text

8-50

Tables

“Create and Work with Tables” on page 9-2

“Add and Delete Table Rows” on page 9-14

“Add and Delete Table Variables” on page 9-18

“Clean Messy and Missing Data in Tables” on page 9-22

“Modify Units, Descriptions and Table Variable Names” on page 9-29
“Access Data in a Table” on page 9-33

“Calculations on Tables” on page 9-41

“Split Data into Groups and Calculate Statistics” on page 9-45
“Split Table Data Variables and Apply Functions” on page 9-49
“Advantages of Using Tables” on page 9-54

“Grouping Variables To Split Data” on page 9-61

“Changes to DimensionNames Property in R2016b” on page 9-65

9 Tables

Create and Work with Tables

This example shows how to create a table from workspace variables, work with

table data, and write tables to files for later use. table is a data type for collecting
heterogeneous data and metadata properties such as variable names, row names,

descriptions, and variable units, in a single container.

Tables are suitable for column-oriented or tabular data that are often stored as columns
in a text file or in a spreadsheet. Each variable in a table can have a different data type,
but must have the same number of rows. However, variables in a table are not restricted
to column vectors. For example, a table variable can contain a matrix with multiple
columns as long as it has the same number of rows as the other table variables. A typical
use for a table is to store experimental data, where rows represent different observations

and columns represent different measured variables.

Tables are convenient containers for collecting and organizing related data variables and
for viewing and summarizing data. For example, you can extract variables to perform
calculations and conveniently add the results as new table variables. When you finish
your calculations, write the table to a file to save your results.

Create and View Table

Create a table from workspace variables and view it. Alternatively, use the Import Tool
or the readtable function to create a table from a spreadsheet or a text file. When you
import data from a file using these functions, each column becomes a table variable.

Load sample data for 100 patients from the patients MAT-file to workspace variables.

load patients
whos

Name

Age

Diastolic

Gender

Height

LastName

Location
SelfAssessedHealthStatus
Smoker

Systolic

Size

100x1
100x1
100x1
100x1
100x1
100x1
100x1
100x1
100x1

Bytes

800
800
12212
800
12416
15008
12340
100
800

Class

double
double
cell
double
cell
cell
cell
logical
double

Attributes

Create and Work with Tables

Weight 100x1 800 double

Populate a table with column-oriented variables that contain patient data. You can
access and assign table variables by name. When you assign a table variable from a
workspace variable, you can assign the table variable a different name.

Create a table and populate it with the Gender, Smoker, Height, and Weight
workspace variables. Display the first five rows.

T = table(Gender,Smoker ,Height,Weight);

T(1:5,:)

ans = 5x4 table
Gender Smoker Height Weight
"Male® true 71 176
"Male® false 69 163
"Female* false 64 131
"Female* false 67 133
"Female* false 64 119

As an alternative, use the readtable function to read the patient data from a comma-
delimited file. readtable reads all the columns that are in a file.

Create a table by reading all columns from the file, patients.dat.

T2 = readtable("patients.dat™);

T2(1:5,:)

ans = 5x10 table
LastName Gender Age Location Height Weight
"Smith*® "Male* 38 "County General Hospital® 71 176
Johnson "Male* 43 "VA Hospital® 69 163
"Williams*® "Female® 38 "St. Mary®"s Medical Center* 64 131
Jones "Female® 40 "VA Hospital* 67 133
"Brown*® "Female® 49 "County General Hospital® 64 119

You can assign more column-oriented table variables using dot notation, T. varname,
where T is the table and varname is the desired variable name. Create identifiers that
are random numbers. Then assign them to a table variable, and name the table variable

9-3

9 Tables

ID. All the variables you assign to a table must have the same number of rows. Display
the first five rows of T.

T.1D = randi(1e4,100,1);

T(1:5,:)

ans = 5x5 table
Gender Smoker Height Weight ID
"Male*® true 71 176 8148
"Male* false 69 163 9058
"Female* false 64 131 1270
"Female* false 67 133 9134
"Female* false 64 119 6324

All the variables you assign to a table must have the same number of rows.

View the data type, description, units, and other descriptive statistics for each variable
by creating a table summary using the summary function.

summary(T)

Variables:
Gender: 100x1 cell array of character vectors

Smoker: 100x1 logical

Values:
True 34
False 66

Height: 100x1 double

Values:
Min 60
Median 67
Max 72

Weight: 100x1 double

Create and Work with Tables

Values:
Min 111
Median 142 .5
Max 202

ID: 100x1 double

Values:
Min 120
Median 5485.5
Max 9706

Return the size of the table.
size(T)
ans =

100 5

T contains 100 rows and 5 variables.

Create a new, smaller table containing the first five rows of T and display it. You can
use numeric indexing within parentheses to specify rows and variables. This method is
similar to indexing into numeric arrays to create subarrays. Tnew is a 5-by-5 table.

Tnew = T(1:5,:)

Tnew = 5x5 table

Gender Smoker Height Weight ID
"Male® true 71 176 8148
"Male® false 69 163 9058
"Female* false 64 131 1270
"Female* false 67 133 9134
"Female* false 64 119 6324

Create a smaller table containing all rows of Tnew and the variables from the second to
the last. Use the end keyword to indicate the last variable or the last row of a table. Tnew
is a 5-by-4 table.

9 Tables

Tnew = Tnew(:,2:end)

Tnew = 5x4 table

Smoker Height Weight ID
true 71 176 8148
false 69 163 9058
false 64 131 1270
false 67 133 9134
false 64 119 6324

Access Data by Row and Variable Names

Add row names to T and index into the table using row and variable names instead of
numeric indices. Add row names by assigning the LastName workspace variable to the
RowNames property of T.

T.Properties.RowNames = LastName;

Display the first five rows of T with row names.

T(1:5,:)
ans = 5x5 table
Gender Smoker Height Weight ID
Smith "Male*® true 71 176 8148
Johnson "Male® false 69 163 9058
Williams "Female* false 64 131 1270
Jones "Female* false 67 133 9134
Brown "Female* false 64 119 6324

Return the size of T. The size does not change because row and variable names are not
included when calculating the size of a table.

size(T)
ans =

100 5

Create and Work with Tables

Select all the data for the patients with the last names "Smith" and *Johnson”. In this
case, it is simpler to use the row names than to use numeric indices. Tnew is a 2-by-5
table.

Tnew = T "Smith","Johnson"}, :)

Tnew = 2x5 table

Gender Smoker Height Weight ID
Smith "Male* true 71 176 8148
Johnson "Male* false 69 163 9058

Select the height and weight of the patient named "Johnson” by indexing on variable
names. Thew is a 1-by-2 table.

Tnew = T("Johnson®,{"Height", "Weight"})

Tnew = 7x2 table
Height Weight

Johnson 69 163

You can access table variables either with dot syntax, as in T.Height, or by named
indexing, as in T(:, "Height").

Calculate and Add Result as Table Variable

You can access the contents of table variables, and then perform calculations on them
using MATLAB® functions. Calculate body-mass-index (BMI) based on data in the
existing table variables and add it as a new variable. Plot the relationship of BMI to a
patient's status as a smoker or a nonsmoker. Add blood-pressure readings to the table,
and plot the relationship of blood pressure to BMI.

Calculate BMI using the table variables, Weight and Height. You can extract Weight
and Height for the calculation while conveniently keeping Weight, Height, and BMI in
the table with the rest of the patient data. Display the first five rows of T.

T.BMI = (T.Weight*0.453592)./(T.Height*0.0254) .12;

9-7

9 Tables

T(1:5,:)
ans = 5x6 table
Gender Smoker Height Weight ID BMI

Smith "Male® true 71 176 8148 24 .547
Johnson "Male® false 69 163 9058 24.071
Williams "Female* false 64 131 1270 22.486
Jones "Female* false 67 133 9134 20.831
Brown "Female* false 64 119 6324 20.426

Populate the variable units and variable descriptions properties for BMI. You can add
metadata to any table variable to describe further the data contained in the variable.

T.Properties._VariableUnits{"BMI"} = “kg/m"2°;
T.Properties.VariableDescriptions{"BMI*} = "Body Mass Index";

Create a histogram to explore whether there is a relationship between smoking and body-
mass-index in this group of patients. You can index into BM1 with the logical values from
the Smoker table variable, because each row contains BMI and Smoker values for the
same patient.

tf = (T-Smoker == false);
hl = histogram(T.BMI(tf), "BinMethod”", "integers”);
hold on

tf = (T-Smoker == true);

h2 = histogram(T.BMI(tf), "BinMethod”", "integers”);
xlabel ("BMI (kg/m™2)");

ylabel (*Number of Patients®);

legend(“Nonsmokers®, "Smokers®);

title("BMI Distributions for Smokers and Nonsmokers®);
hold off

Create and Work with Tables

BMI Distributions for Smokers and Nonsmokers
1 5 T T T T

[Monsmokers
[|smokers

Mumber of Patients
=)

n

16 18 20 22 24 26 28 30 32
BMI (kg/m?)
Add blood pressure readings for the patients from the workspace variables Systolic

and Diastolic. Each row contains Systolic, Diastolic, and BMI values for the same
patient.

T.Systolic = Systolic;
T.Diastolic = Diastolic;

Create a histogram to show whether there is a relationship between high values of
Diastolic and BMI.

tf = (T.BMI <= 25);

hl = histogram(T.Diastolic(tf), "BinMethod","integers”);
hold on

tf = (T.BMI > 25);

9-9

9 Tables

h2 = histogram(T.Diastolic(tf), "BinMethod", "integers”);
xlabel ("Diastolic Reading (mm Hg)");

ylabel (*Number of Patients®);

legend("BMI <= 257,"BMI > 25%);

title("Diastolic Readings for Low and High BMI®);

hold off
. Diastolic Readings for Low and High BMI

[eMi<=25
7t [IBMI=>25 |

Mumber of Patients

65 70 75 80 85 90 95 100
Diastolic Reading {mm Hg)

Reorder Table Variables and Rows for Output

To prepare the table for output, reorder the table rows by name, and table variables by
position or name. Display the final arrangement of the table.

Sort the table by row names so that patients are listed in alphabetical order.

9-10

Create and Work with Tables

T = sortrows(T, "RowNames™);

T(1:5,:)
ans = 5x8 table
Gender Smoker Height Weight ID BMI Systolic

Adams "Female* false 66 137 8235 22.112 127
Alexander "Male* true 69 171 1300 25.252 128
Allen "Female* false 63 143 7432 25.331 113
Anderson "Female* false 68 128 1577 19.462 114
Bailey "Female* false 68 130 2239 19.766 113

Create a BloodPressure variable to hold blood pressure readings in a 100-by-2 table
variable.

T.BloodPressure = [T.Systolic T.Diastolic];
Delete Systolic and Diastolic from the table since they are redundant.

T.Systolic = [];
T.Diastolic = [];

T(1:5,:)
ans = 5x7 table
Gender Smoker Height Weight ID BMI BloodPres:
Adams "Female* false 66 137 8235 22.112 127 8:
Alexander "Male* true 69 171 1300 25.252 128 e]
Allen "Female* false 63 143 7432 25.331 113 8(
Anderson "Female* false 68 128 1577 19.462 114 7
Bailey "Female* false 68 130 2239 19.766 113 8:

To put ID as the first column, reorder the table variables by position.
T=T(,[5 1:4 6 7]);
T(1:5,:)

ans = 5x7 table
ID Gender Smoker Height Weight BMI BloodPres:

9-11

9 Tables

Adams 8235 "Female* false 66 137 22.112 127 8:
Alexander 1300 "Male® true 69 171 25.252 128 9
Allen 7432 "Female* false 63 143 25.331 113 8l
Anderson 1577 "Female* false 68 128 19.462 114 7
Bailey 2239 "Female® false 68 130 19.766 113 8:

You also can reorder table variables by name. To reorder the table variables so that
Gender is last:

1 Find "Gender" in the VariableNames property of the table.

2 Move "Gender"™ to the end of a cell array of variable names.

3 Use the cell array of names to reorder the table variables.
varnames = T.Properties.VariableNames;
others = ~strcmp("Gender”,varnames);

varnames = [varnames(others) "Gender"];
T = T(:,varnames);

Display the first five rows of the reordered table.

T(1:5,:)
ans = 5x7 table
ID Smoker Height Weight BMI BloodPressure Genc
Adams 8235 false 66 137 22.112 127 83 " Fem:
Alexander 1300 true 69 171 25.252 128 99 "Mal¢
Allen 7432 false 63 143 25.331 113 80 " Fem:
Anderson 1577 false 68 128 19.462 114 77 " Fem:
Bailey 2239 false 68 130 19.766 113 81 " Fem:

Write Table to File

You can write the entire table to a file, or create a subtable to write a selected portion of
the original table to a separate file.

Write T to a file with the writetable function.

writetable(T, "allPatientsBMI . txt");

9-12

Create and Work with Tables

You can use the readtable function to read the data in al IPatientsBMI . txt into a
new table.

Create a subtable and write the subtable to a separate file. Delete the rows that contain
data on patients who are smokers. Then remove the Smoker variable. nonsmokers
contains data only for the patients who are not smokers.

nonsmokers = T;

toDelete = (nonsmokers.Smoker == true);
nonsmokers(toDelete,:) = [];
nonsmokers.Smoker = [];

Write nonsmokers to a file.

writetable(nonsmokers, "nonsmokersBMI . txt");

See Also

array2table | cell2table | Import Tool | readtable | sortrows | struct2table
| summary | Table Properties | table | writetable

Related Examples

. “Clean Messy and Missing Data in Tables” on page 9-22

. “Modify Units, Descriptions and Table Variable Names” on page 9-29
. “Access Data in a Table” on page 9-33

More About
. “Advantages of Using Tables” on page 9-54

9-13

9 Tables

Add and Delete Table Rows

9-14

This example shows how to add and delete rows in a table. You can also edit tables using
the Variables Editor.

Load Sample Data

Load the sample patients data and create a table, T.

load patients

T = table(LastName,Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);
size(T)

ans =

100 8

The table, T, has 100 rows and eight variables (columns).
Add Rows by Concatenation

Read data on more patients from a comma-delimited file, morePatients.csv, into a
table, T2. Then, append the rows from T2 to the end of the table, T.

T2 = readtable(fullfile(matlabroot, "examples”, "matlab”, "morePatients.csv™));
Tnew = [T;T2];
size(Tnew)

ans =

104 8

The table Tnew has 104 rows. In order to vertically concatenate two tables, both tables
must have the same number of variables, with the same variable names. If the variable
names are different, you can directly assign new rows in a table to rows from another
table. For example, T(end+1:end+4,:) = T2.

Add Rows from Cell Array

To append new rows stored in a cell array, vertically concatenate the cell array onto
the end of the table. You can concatenate directly from a cell array when it has the

Add and Delete Table Rows

right number of columns and the contents of its cells can be concatenated onto the
corresponding table variables.

cellPatients = {"Edwards”, "Male*®,42,70,158,0,116,83;
"Falk®,"Female”,28,62,125,1,120,71}%};

Tnew = [Tnew;cellPatients];

size(Tnew)

ans =

106 8

You also can convert a cell array to a table using the cel 12table function.
Add Rows from Structure

You also can append new rows stored in a structure. Convert the structure to a table, and
then concatenate the tables.

structPatients(l,1).LastName = "George”;
structPatients(1,1).Gender = “Male®;
structPatients(1,1).Age = 45;

structPatients(1,1).Height = 76;
structPatients(1,1) .Weight = 182;
structPatients(1,1).Smoker = 1;

structPatients(1,1).Systolic = 132;
structPatients(l,1).Diastolic = 85;

structPatients(2,1).LastName = “Hadley~;
structPatients(2,1).Gender = “Female”;
structPatients(2,1).Age = 29;

structPatients(2,1).Height = 58;
structPatients(2,1) .Weight = 120;
structPatients(2,1).Smoker = O;

structPatients(2,1).Systolic = 112;
structPatients(2,1).Diastolic = 70;

Tnew = [Tnew;struct2table(structPatients)];
size(Tnew)

ans =

108 8

9-15

9 Tables

9-16

Omit Duplicate Rows

To omit any rows in a table that are duplicated, use the unique function.

Tnew = unique(Tnew);
size(Tnew)

ans =

106 8

unique deleted two duplicate rows.
Delete Rows by Row Number

Delete rows 18, 20, and 21 from the table.

Tnew([18,20,21],:) = [1:
size(Tnew)

ans =

103 8

The table contains information on 103 patients now.
Delete Rows by Row Name

First, specify the variable of identifiers, LastName, as row names. Then, delete the
variable, LastName, from Tnew. Finally, use the row name to index and delete rows.

Tnew.Properties.RowNames = Tnew.LastName;
Tnew.LastName = [];

Tnew("Smith",:) = [1;

size(Tnew)

ans =

102 7

The table now has one less row and one less variable.

Add and Delete Table Rows

Search for Rows to Delete

You also can search for observations in the table. For example, delete rows for any
patients under the age of 30.

toDelete = Tnew.Age < 30;
Tnew(toDelete,:) = [1;
size(Tnew)

ans =

85 7

The table now has 17 fewer rows.

See Also

array2table | cell2table | readtable | struct2table | Table Properties |
table

Related Examples
. “Add and Delete Table Variables” on page 9-18
. “Clean Messy and Missing Data in Tables” on page 9-22

9-17

9 Tables

Add and Delete Table Variables

This example shows how to add and delete column-oriented variables in a table. You also
can edit tables using the Variables Editor.

Load Sample Data

Load the sample patients data and create two tables. Create one table, T, with
information collected from a patient questionnaire and create another table, T1, with
data measured from the patient.

load patients

T = table(Age,Gender,Smoker);
Tl = table(Height,Weight,Systolic,Diastolic);

Display the first five rows of each table.

T(1:5,:)

ans = 5x3 table
Age Gender Smoker
38 "Male® true
43 "Male® false
38 "Female* false
40 "Female* false
49 "Female* false

T1(1:5,:)

ans = 5x4 table
Height Weight Systolic Diastolic

71 176 124 93
69 163 109 77
64 131 125 83
67 133 117 75
64 119 122 80

The table T has 100 rows and 3 variables.

9-18

Add and Delete Table Variables

The table T1 has 100 rows and 4 variables.

Add Variables by Concatenating Tables

Add variables to the table, T, by horizontally concatenating it with T1.
T = [T T1];

Display the first five rows of the table, T.

T(1:5,:)
ans = 5x7 table
Age Gender Smoker Height Weight Systolic Diastolic
38 "Male® true 71 176 124 93
43 "Male® false 69 163 109 77
38 "Female* false 64 131 125 83
40 "Female* false 67 133 117 75
49 "Female* false 64 119 122 80

The table, T, now has 7 variables and 100 rows.

If the tables that you are horizontally concatenating have row names, horzcat
concatenates the tables by matching the row names. Therefore, the tables must use the
same row names, but the row order does not matter.

Add and Delete Variables by Name

First create a new variable for blood pressure as a horizontal concatenation of the
two variables Systolic and Diastolic. Then, delete the variables Systolic and
Diastolic by name using dot indexing.

T.BloodPressure = [T.Systolic T.Diastolic];

T.Systolic = [];
T.Diastolic = [];

Alternatively, you can also use parentheses with named indexing to delete the variables
Systolic and Diastolic at once, T(:,{"Systolic", "Diastolic"}) = []:.

Display the first five rows of the table, T.

9-19

9 Tables

9-20

T(1:5,:)

ans = 5x6 table

Age

38
43
38
40
49

T now has 6 variables and 100 rows.

Gender Smoker Height Weight BloodPressure
"Male* true 71 176 124 93
"Male* false 69 163 109 77
"Female” false 64 131 125 83
"Female* false 67 133 117 75
"Female* false 64 119 122 80

Add a new variable, BMI, in the table, T, to contain the body mass index for each patient.

BMI is a function of height and weight.

T.BMI =

(T-Weight*0.453592) /(T .Height*0.0254) ."2;

The operators ./ and . in the calculation of BMI indicate element-wise division and
exponentiation, respectively.

Display the first five rows of the table, T.

T(1:5,:)

ans = 5x
Age

38
43
38
40
49

7 table
Gender Smoker Height Weight BloodPressure BMI
"Male* true 71 176 124 93 24547
"Male* false 69 163 109 77 24.071
"Female” false 64 131 125 83 22.486
"Female” false 67 133 117 75 20.831
"Female” false 64 119 122 80 20.426

T has 100 rows and 7 variables.

Delete Variables by Number

Delete the third variable, Smoker, and the sixth variable, BloodPressure, from the

table.

Add and Delete Table Variables

T, [8.6D = [:

Display the first five rows of the table, T.

T(1:5,:)

ans = 5x5 table

Age

38
43
38
40
49

Gender Height Weight BMI
"Male* 71 176 24 .547
"Male* 69 163 24.071
"Female” 64 131 22.486
"Female” 67 133 20.831
"Female” 64 119 20.426

T has 100 rows and 5 variables.

See Also

array2table | cell2table | readtable | struct2table | table

Related Examples

. “Add and Delete Table Rows” on page 9-14
. “Clean Messy and Missing Data in Tables” on page 9-22

. “Modify Units, Descriptions and Table Variable Names” on page 9-29

9-21

9 Tables

Clean Messy and Missing Data in Tables
This example shows how to find, clean, and delete table rows with missing data.
Load Sample Data

Load sample data from a comma-separated text file, nessy.csv. The file contains many
different missing data indicators:

* Empty character vector (")

+ period ()
* NA

+ NaN

- -99

To specify the character vectors to treat as empty values, use the "TreatAsEmpty*®
name-value pair argument with the readtable function.

T

readtable(fullfile(matlabroot, "examples”, "matlab”, "messy.csv®), ...
"TreatAsEmpty”,{".","NA"})

T = 21x5 table

A B C D E
"afel” 3 "yes* 3 3
"egh3* NaN "no* 7 7
"wth4* 3 "yes* 3 3
"atn2* 23 "no* 23 23
"argl- 5 "yes” 5 5
"jre3d- 34.6 "yes* 34.6 34.6
"wen9* 234 "yes* 234 234
"ple2* 2 "no* 2 2
"dbo8* 5 “no* 5 5
"oli4- 5 "yes* 5 5
"wnk3* 245 "yes* 245 245
"abk6*" 563 " 563 563
"pnj5* 463 "no* 463 463
"wnn3* 6 "no* 6 6
"oks9* 23 "yes* 23 23
"wba3* NaN "yes* NaN 14
"pkn4* 2 "no* 2 2

9-22

Clean Messy and Missing Data in Tables

“adw3* 22 “no* 22 22
"poj2- -99 "yes* -99 -99
"bas8- 23 “no* 23 23
"gry5* NaN "yes* NaN 21

T is a table with 21 rows and five variables. " TreatAsEmpty" only applies to numeric
columns in the file and cannot handle numeric literals, such as *-99~.

Summarize Table

View the data type, description, units, and other descriptive statistics for each variable
by creating a table summary using the summary function.

summary(T)

Variables:
A: 21x1 cell array of character vectors

B: 21x1 double

Values:
Min -99
Median 14
Max 563
NumMissing 3

C: 21x1 cell array of character vectors

D: 21x1 double

Values:
Min -99
Median 7
Max 563
NumMissing 2

E: 21x1 double
Values:

Min -99

9-23

9 Tables

Median 14
Max 563

When you import data from a file, the default is for readtable to read any variables
with nonnumeric elements as a cell array of character vectors.

Find Rows with Missing Values
Display the subset of rows from the table, T, that have at least one missing value.

TF = ismissing(T,{"" "." "NA" NaN -99});
T(any(TF,2),:)

ans = 5x5 table

A B C D E
"egh3* NaN "no*” 7 7
"abk6*" 563 0 563 563
"wba3* NaN "yes” NaN 14
"poj2- -99 "yes” -99 -99
"gry5* NaN "yes*® NaN 21

readtable replaced "." and "NA" with NaN in the numeric variables, B, D, and E.
Replace Missing Value Indicators

Clean the data so that the missing values indicated by code -99 have the standard
MATLAB® numeric missing value indicator, NaN.

T = standardizeMissing(T,-99)

T = 21x5 table

A B C D E
"afel” 3 "yes* 3 3
"egh3* NaN "no* 7 7
"wth4* 3 "yes* 3 3
"atn2* 23 "no* 23 23
"argl- 5 "yes* 5 5
"jre3" 34.6 "yes* 34.6 34.6
"wen9* 234 "yes* 234 234
"ple2* 2 "no* 2 2

9-24

Clean Messy and Missing Data in Tables

"dbo8*
"oii4"
"wnk3*
"abk6*
"pnjs"
"wnn3*
"oks9*
"wba3"
"pkn4*
"adw3"
"poj2"
"bas8*
"gry5s"

245
563
463
6
23
NaN
2
22
NaN
23
NaN

no
"yes"
"yes"

no*
no*
"yes®
"yes®
"no"
"no"
"yes®
"no"
"yes

5

5
245
563
463
6
23
NaN
2
22
NaN
23
NaN

5

5
245
563
463
6
23
14
2
22
NaN
23
21

standardizeMissing replaces three instances of -99 with NaN.

Create a new table, T2, and replace missing values with values from previous rows of the
table. FilImissing provides a number of ways to fill in missing values.

T2

T2

Fillmissing(T, "previous®)

21x5 table
A B C D E

"afel” 3 "yes* 3 3
"egh3* 3 "no* 7 7
"wth4* 3 "yes* 3 3
"atn2- 23 "no* 23 23
"argl® 5 "yes* 5 5
"jre3d- 34.6 "yes” 34.6 34.6
"wen9* 234 "yes* 234 234
"ple2* 2 "no* 2 2
"dbo8* 5 "no* 5 5
"oli4- 5 "yes* 5 5
"wnk3*® 245 "yes” 245 245
"abk6*" 563 "yes” 563 563
"pnj5° 463 "no* 463 463
"wnn3* 6 "no* 6 6
"oks9- 23 "yes* 23 23
"wba3* 23 "yes* 23 14
"pkn4* 2 "no* 2 2
“adw3* 22 "no* 22 22
"poj2- 22 "yes* 22 22

9-25

9 Tables

"bas8- 23 "no* 23 23
"gry5* 23 "yes* 23 21
Remove Rows with Missing Values

Create a new table, T3, that contains only the rows from T without missing values.

T3 = rmmissing(T)

T3 = 16x5 table
A B C D E
"afel” 3 "yes* 3 3
"wth4* 3 "yes* 3 3
"atn2* 23 "no* 23 23
"argl” 5 "yes* 5 5
"jre3- 34.6 "yes* 34.6 34.6
"wen9*® 234 "yes” 234 234
"ple2- 2 "no* 2 2
"dbo8* 5 "no* 5 5
“oii4g" 5 "yes* 5 5
"wnk3* 245 "yes” 245 245
"pnj5° 463 "no* 463 463
"wnn3* 6 "no* 6 6
"oks9- 23 "yes* 23 23
"pkn4* 2 "no* 2 2
"adw3* 22 "no” 22 22
"bas8* 23 "no* 23 23

T3 contains 16 rows and five variables.
Organize Data

Sort the rows of T3 in descending order by C, and then sort in ascending order by A.

T3 = sortrows(T2,{"C","A"},{ "descend”, "ascend"})
T3 = 21x5 table
A B C D E
"abk6" 563 "yes” 563 563

9-26

Clean Messy and Missing Data in Tables

"afel”
"argl*
"grys"
"jre3-
"oii4g"
"oks9*
"poj2"
"wba3"
"wen9*
"wnk3*
"wth4*
"adw3"
"atn2*
"bas8*
"dbo8*
"egh3*
"pkn4*
"ple2*
"pnj5"
"wnn3*

23
34.6

23
22
23
234
245

"yes®
"yes®
"yes®
"yes®
"yes®
"yes®
"yes®
"yes®
"yes®
"yes®
"yes®
"no"
no*
no*
no*
no*
no*
no*
no*
no*

23
34.6

23
22
23
234
245

21
34.6

23
22
14
234
245

In C, the rows are grouped first by "yes”, followed by "no”. Then in A, the rows are
listed alphabetically.

Reorder the table so that A and C are next to each other.

T3
T3

T3(:,{"A","°C","B","D","E"})

21x5 table
A C B D E

"abk6*" "yes* 563 563 563
"afel” "yes* 3 3 3
"argl* “yes*® 5 5 5
"gry5* “yes*® 23 23 21
"jre3d- "yes* 34.6 34.6 34.6
"oli4g- "yes* 5 5 5
"oks9- "yes* 23 23 23
"poj2- "yes* 22 22 22
"wba3* "yes* 23 23 14
"wen9* “yes*® 234 234 234
“wnk3*® "yes* 245 245 245
"wth4* "yes* 3 3 3

9-27

9 Tables

"adw3" "no* 22 22 22
"atn2* "no* 23 23 23
"bas8* "no* 23 23 23
"dbo8* "no* 5 5 5
"egh3* "no*” 3 7 7
"pkn4* "no*” 2 2 2
"ple2* "no*” 2 2 2
"pnj5* "no*” 463 463 463
"wnn3* "no* 6 6 6
See Also

Ffillmissing | ismissing | readtable | rmmissing | sortrows |
standardizeMissing | summary

Related Examples

. “Add and Delete Table Rows” on page 9-14

. “Add and Delete Table Variables” on page 9-18

. “Modify Units, Descriptions and Table Variable Names” on page 9-29
. “Access Data in a Table” on page 9-33

. “Missing Data”

9-28

Modify Units, Descriptions and Table Variable Names

Modify Units, Descriptions and Table Variable Names

This example shows how to access and modify table properties for variable units,
descriptions and names. You also can edit these property values using the Variables
Editor.

Load Sample Data

Load the sample patients data and create a table.

load patients
BloodPressure = [Systolic Diastolic];

T = table(Gender,Age,Height,Weight,Smoker,BloodPressure);

Display the first five rows of the table, T.

T(1:5,:)

ans = 5x6 table
Gender Age Height Weight Smoker BloodPressure
"Male* 38 71 176 true 124 93
"Male* 43 69 163 false 109 77
"Female* 38 64 131 false 125 83
"Female* 40 67 133 false 117 75
"Female* 49 64 119 false 122 80

T has 100 rows and 6 variables.
Add Variable Units

Specify units for each variable in the table by modifying the table property,
VariableUnits. Specify the variable units as a cell array of character vectors.

T.Properties.VariableUnits = {"° "Yrs® "In" "Lbs® " ""};

An individual empty character vector within the cell array indicates that the
corresponding variable does not have units.

Add a Variable Description for a Single Variable

Add a variable description for the variable, BloodPressure. Assign a single character
vector to the element of the cell array containing the description for BloodPressure.

9-29

9 Tables

9-30

T.Properties.VariableDescriptions{"BloodPressure®"} = "Systolic/Diastolic”;

You can use the variable name, "BloodPressure”, or the numeric index of the variable,
6, to index into the cell array of character vectors containing the variable descriptions.

Summarize the Table

View the data type, description, units, and other descriptive statistics for each variable
by using summary to summarize the table.

summary(T)

Variables:
Gender: 100x1 cell array of character vectors
Age: 100x1 double

Units: Yrs

Values:
Min 25
Median 39
Max 50

Height: 100x1 double

Units: In
Values:
Min 60
Median 67
Max 72

Weight: 100x1 double

Units: Lbs

Values:
Min 111
Median 142 .5
Max 202

Smoker: 100x1 logical

Modify Units, Descriptions and Table Variable Names

Values:
True 34
False 66

BloodPressure: 100x2 double

Description: Systolic/Diastolic

Values:
BloodPressure 1 BloodPressure 2
Min 109 68
Median 122 81.5
Max 138 99

The BloodPressure variable has a description and the Age, Height, Weight, and
BloodPressure variables have units.

Change a Variable Name

Change the variable name for the first variable from Gender to Sex.

T.Properties.VariableNames{"Gender"} = "Sex";

Display the first five rows of the table, T.

T(1:5,:)
ans = 5x6 table
Sex Age Height Weight Smoker BloodPressure

"Male® 38 71 176 true 124 93
"Male® 43 69 163 false 109 77
"Female* 38 64 131 false 125 83
"Female* 40 67 133 false 117 75
"Female* 49 64 119 false 122 80

9-31

9 Tables

In addition to properties for variable units, descriptions and names, there are table
properties for row and dimension names, a table description, and user data.

See Also

array2table | cell2table | readtable | struct2table | summary | Table
Properties | table

Related Examples
. “Add and Delete Table Variables” on page 9-18
. “Access Data in a Table” on page 9-33

9-32

Access Data in a Table

Access Data in a Table

In this section...

“Ways to Index into a Table” on page 9-33
“Create Table from Subset of Larger Table” on page 9-35

“Create Array from the Contents of Table” on page 9-38

Ways to Index into a Table

A table is a container for storing column-oriented variables that have the same number
of rows. Parentheses allow you to select a subset of the data in a table and preserve the
table container. Curly braces and dot indexing allow you to extract data from a table.

If you use curly braces, the resulting array is the horizontal concatenation of the specified
table variables containing only the specified rows. The data types of all the specified

variables must be compatible for concatenation. You can then perform calculations using
MATLAB functions.

Dot indexing extracts data from one table variable. The result is an array of the same
data type as extracted variable. You can follow the dot indexing with parentheses to

specify a subset of rows to extract from a variable.

T.Variables horizontally concatenates all table variables into an array. T.Variables
is equivalent to T{:, - }.

To subscript into a table and select variables of a specified type, use the vartype
function.

Summary of Table Indexing Methods

Consider a table, T.

Type of Result Syntax Rows Variables
Indexing
Parentheses| table [T(rows,vars) One or more rows, One or more variables,
specified by rows specified by vars

9-33

9 Tables

9-34

Type of Result Syntax Rows Variables
Indexing

Curly extracted[T{rows,vars} One or more rows, One or more variables,
Braces data specified by rows specified by vars

Dot extracted T.var All rows One variable, specified
Indexing data by var (a name) or by

T. varindex (a number)
(varindex)

Dot extracted| T.var(rows)| One or more rows, One variable, specified
Indexing data specified by rows by var (a name)
Variables |extracted|T.Variables All rows All variables when they
Property data can be horizontally

concatenated
into an array
Subscripting| table S = One or more rows, |One or more variables of
by Variable vartype(type) specified by rows the specified type (for
Type example, "numeric"®)
T(rows,S)
Subscripting |extracted S = One or more rows, |One or more variables of
by Variable | data vartype(type) specified by rows the specified type (for
Type example, "numeric"”)
T{rows,S}

How to Specify Rows to Access

When indexing into a table with parentheses, curly braces, or dot indexing, you can
specify rows as a colon, numeric indices, or logical expressions. Furthermore, you can
index by name using a single row name or a cell array of row names.

A logical expression can contain curly braces or dot indexing to extract data from which
you can define the subset of rows. For example, rows = T.Var2>0 returns a logical
array with logical true (1) for rows where the value in the variable Var2 is greater than

Zero.

How to Specify Variables to Access

When indexing into a table with parentheses or curly braces, you can specify vars as a
colon, numeric indices, logical expressions, a single variable name, a cell array of variable
names, or as the output of the vartype function..

Access Data in a Table

When using dot indexing, you must specify a single variable to access. For a single
variable name, use T.var. For a single variable index, specified as a positive integer, use
T.(varindex).

Create Table from Subset of Larger Table
This example shows how to create a table from a subset of a larger table.
Load Sample Data

Load the sample patients data and create a table. Use the unique identifiers in
LastName as row names.

load patients

patients = table(Age,Gender,Height,Weight,Smoker, ...
"RowNames*® ,LastName) ;

The table, patients, contains 100 rows and 5 variables.

View the data type, description, units, and other descriptive statistics for each variable
by using summary to summarize the table.

summary(patients)

Variables:

Age: 100x1 double

Values:
Min 25
Median 39
Max 50

Gender: 100x1 cell array of character vectors

Height: 100x1 double

Values:
Min 60
Median 67
Max 72

9-35

9 Tables

9-36

Weight: 100x1 double

Values:
Min 111
Median 142 .5
Max 202

Smoker: 100x1 logical

Values:
True 34
False 66

Index Using Numeric Indices

Create a subtable containing the first five rows and all the variables from the table,
patients. Use numeric indexing within the parentheses to specify the desired rows and
variables. This is similar to indexing with numeric arrays.

T1

patients(1:5,:)

Tl = 5x5 table

Age Gender Height Weight Smoker
Smith 38 "Male® 71 176 true
Johnson 43 "Male® 69 163 false
Williams 38 "Female* 64 131 false
Jones 40 "Female* 67 133 false
Brown 49 "Female* 64 119 false

T1 is a 5-by-5 table. In addition to numeric indices, you can use row or variable names
inside the parentheses. In this case, using row indices and a colon is more compact than
using row or variable names.

Index Using Names

Select all the data for the patients with the last names "Adams® and "Brown®. In this
case, it is simpler to use the row names than to use the numeric index.

T2 = patients({"Adams”, "Brown"},:)

Access Data in a Table

T2 = 2x5 table

Age Gender Height Weight Smoker
Adams 48 "Female* 66 137 false
Brown 49 "Female* 64 119 false

T2 is a 2-by-5 table.
Index Using a Logical Expression

Create a new table, T3, containing the gender, height, and weight of the patients under
the age of 30. Select only the rows where the value in the variable, Age, is less than 30.

Use dot notation to extract data from a table variable and a logical expression to define
the subset of rows based on that extracted data.

rows
vars

patients.Age<30;
{"Gender*, "Height", “"Weight"};

rows is a 100-by-1 logical array containing logical true (1) for rows where the value in
the variable, Age, is less than 30.

Use parentheses to return a table containing the desired subset of the data.

T3 = patients(rows,vars)
T3 = 15x3 table
Gender Height Weight

Moore "Male* 68 183
Jackson "Male* 71 174
Garcia "Female* 69 131
Walker "Female* 65 123
Hall "Male* 70 189
Young "Female* 63 114
Hill "Female* 64 138
Rivera "Female* 63 130
Cooper "Female* 65 127
Cox "Female* 66 111
Howard "Female* 68 134
James "Male* 66 186
Jenkins "Male* 69 189

9-37

9 Tables

Perry "Female” 64 120
Alexander "Male* 69 171

T3 is a 15-by-3 table.

Create Array from the Contents of Table

This example shows how to extract the contents of a table using curly braces or dot
indexing.

Load Sample Data

Load the sample patients data and create a table. Use the unique identifiers in
LastName as row names.

load patients

patients = table(Age,Gender,Height,Weight,Smoker, . ..
"RowNames*® ,LastName) ;

The table, patients, contains 100 rows and 5 variables.
Extract Multiple Rows and Multiple Variables

Extract data from multiple variables in the table, patients by using curly braces. Since
dot indexing extracts data from a single variable at a time, braces are more convenient
when you want to extract more than one variable.

Extract the height and weight for the first five patients. Use numeric indices to
select the subset of rows, 1:5, and variable names to select the subset of variables,
{Height,Weight}.

A = patients{l1:5,{"Height",*Weight"}}

A =
71 176
69 163
64 131
67 133
64 119

9-38

Access Data in a Table

Ais a 5-by-2 numeric array.
Extract Data from One Variable

Use dot indexing to easily extract the contents of a single variable. Plot a histogram of
the numeric data in the variable, Weight.

figureQ
histogram(patients.Weight)
title(" Patient Weight™)

Patient Weight

25

15

10

100 120 140 160 180 200 220

patients.Weight is a double-precision column vector with 100 rows. Alternatively, you
can use curly braces, patients{:, "Weight"}, to extract all the rows for the variable
Weight.

9-39

9 Tables

To specify a subset of rows for a single variable, you can follow the dot indexing with

parentheses or curly braces. Extract the heights of the nonsmoker patients under the age
of 30.

Use dot notation to extract data from table variables and a logical expression to define
the subset of rows based on that extracted data.

rows = patients.Smoker==false & patients.Age<30;

Use dot notation to extract the desired rows from the variable, Height.
patients.Height(rows)

ans =

68
71
70
63
64
63
65
66
68
66

The output is a 11-by-1 numeric array. Alternatively, you can specify the single variable,
Height, within curly braces to extract the desired data, patients{rows, "Height"}.

See Also

histogram | summary | Table Properties | table

Related Examples
. “Create and Work with Tables” on page 9-2
. “Modify Units, Descriptions and Table Variable Names” on page 9-29

. “Calculations on Tables” on page 9-41

More About
. “Advantages of Using Tables” on page 9-54

9-40

Calculations on Tables

Calculations on Tables

This example shows how to perform calculations on tables.

The functions rowfun and varfun each apply a specified function to a table, yet many
other functions require numeric or homogeneous arrays as input arguments. You can
extract data from individual variables using dot indexing or from one or more variables
using curly braces. The extracted data is then an array that you can use as input to other
functions.

Read Sample Data into Table

Read data from a comma-separated text file, testScores.csy, into a table using the
readtable function. testScores.csv contains test scores for several students. Use the
student names in the first column of the text file as row names in the table.

T

readtable(fullfile(matlabroot, "examples”, "matlab”, "testScores.csv"), ...
"ReadRowNames*™ , true)

T = 10x4 table

Gender Testl Test2 Test3
HOWARD "male” 90 87 93
WARD "male” 87 85 83
TORRES "male” 86 85 88
PETERSON "female” 75 80 72
GRAY "female” 89 86 87
RAMIREZ "female” 96 92 98
JAMES "male*” 78 75 77
WATSON "female” 91 94 92
BROOKS "female” 86 83 85
KELLY "male” 79 76 82

T 1s a table with 10 rows and four variables.
Summarize the Table

View the data type, description, units, and other descriptive statistics for each variable
by using the summary function to summarize the table.

summary(T)

9-41

9 Tables

Variables:
Gender: 10x1 cell array of character vectors

Testl: 10x1 double

Values:
Min 75
Median 86.5
Max 96

Test2: 10x1 double

Values:
Min 75
Median 85
Max 94

Test3: 10x1 double

Values:
Min 72
Median 86
Max 98

The summary contains the minimum, median, and maximum score for each test.
Find the Average Across Each Row

Extract the data from the second, third, and fourth variables using curly braces, {}, find
the average of each row, and store it in a new variable, TestAvg.

T.TestAvg = mean(T{:,2:end},2)

T = 10x5 table

Gender Testl Test2 Test3 TestAvg
HOWARD "male* 90 87 93 90
WARD "male* 87 85 83 85
TORRES "male* 86 85 88 86.333
PETERSON "female” 75 80 72 75.667

9-42

Calculations on Tables

GRAY "female” 89 86 87 87.333
RAMIREZ "female” 96 92 98 95.333
JAMES "male* 78 75 77 76.667
WATSON "female” 91 94 92 92.333
BROOKS "female” 86 83 85 84.667
KELLY "male* 79 76 82 79

Alternatively, you can use the variable names, T{:,{"Testl", "Test2","Test3"}} or
the variable indices, T{:,2:4} to select the subset of data.

Compute Statistics Using Grouping Variable

Compute the mean and maximum of TestAvg by gender of the students.

varfun(@mean,T, "InputVariables”, "TestAvg", ...
"GroupingVariables®, "Gender")

ans = 2x3 table

Gender GroupCount mean_TestAvg
“female* 5 87.067
"male* 5 83.4

Replace Data Values

The maximum score for each test is 100. Use curly braces to extract the data from the
table and convert the test scores to a 25 point scale.

T{:,2:end} = T{:,2:end}*25/100

T = 10x5 table

Gender Testl Test2 Test3 TestAvg
HOWARD "male* 22.5 21.75 23.25 22.5
WARD "male* 21.75 21.25 20.75 21.25
TORRES "male* 21.5 21.25 22 21.583
PETERSON "female” 18.75 20 18 18.917
GRAY "female” 22.25 21.5 21.75 21.833
RAMIREZ "female” 24 23 24.5 23.833
JAMES "male* 19.5 18.75 19.25 19.167
WATSON "female” 22.75 23.5 23 23.083

9-43

9 Tables

BROOKS "female* 21.5 20.75 21.25 21.167
KELLY "male* 19.75 19 20.5 19.75
Change Variable Name

Change the variable name from TestAvg to Final.
T.Properties.VariableNames{end} = "Final”

T = 10x5 table

Gender Testl Test2 Test3 Final
HOWARD "male” 22.5 21.75 23.25 22.5
WARD "male” 21.75 21.25 20.75 21.25
TORRES "male” 21.5 21.25 22 21.583
PETERSON "female” 18.75 20 18 18.917
GRAY "female” 22.25 21.5 21.75 21.833
RAMIREZ "female” 24 23 24.5 23.833
JAMES "male” 19.5 18.75 19.25 19.167
WATSON "female” 22.75 23.5 23 23.083
BROOKS "female” 21.5 20.75 21.25 21.167
KELLY "male” 19.75 19 20.5 19.75

See Also

Ffindgroups | rowfun | splitapply | summary | Table Properties | table | varfun

Related Examples
. “Access Data in a Table” on page 9-33
. “Split Table Data Variables and Apply Functions” on page 9-49

9-44

Split Data into Groups and Calculate Statistics

Split Data into Groups and Calculate Statistics

This example shows how to split data from the patients.mat data file into groups.
Then it shows how to calculate mean weights and body mass indices, and variances in
blood pressure readings, for the groups of patients. It also shows how to summarize the
results in a table.

Load Patient Data

Load sample data gathered from 100 patients.

load patients

Convert Gender and SelfAssessedHeal thStatus to categorical arrays.

Gender = categorical (Gender);
SelfAssessedHealthStatus = categorical (SelfAssessedHealthStatus);

whos
Name Size Bytes Class Attributes
Age 100x1 800 double
Diastolic 100x1 800 double
Gender 100x1 346 categorical
Height 100x1 800 double
LastName 100x1 12416 cell
Location 100x1 15008 cell
SelfAssessedHealthStatus 100x1 592 categorical
Smoker 100x1 100 logical
Systolic 100x1 800 double
Weight 100x1 800 double

Calculate Mean Weights

Split the patients into nonsmokers and smokers using the Smoker variable. Calculate
the mean weight for each group.

[G,smoker] = findgroups(Smoker);
meanWeight = splitapply(@mean,Weight,G)
meanWeight =

149.9091

161.9412

9-45

9 Tables

9-46

The findgroups function returns G, a vector of group numbers created from Smoker.
The splitapply function uses G to split Weight into two groups. splitapply applies
the mean function to each group and concatenates the mean weights into a vector.

findgroups returns a vector of group identifiers as the second output argument. The
group identifiers are logical values because Smoker contains logical values. The patients
in the first group are nonsmokers, and the patients in the second group are smokers.

smoker

smoker = 2x1 logical array
0
1

Split the patient weights by both gender and status as a smoker and calculate the mean
weights.

G = findgroups(Gender,Smoker);
meanWeight = splitapply(@mean,Weight,G)

meanWeight =

130.3250
130.9231
180.0385
181.1429

The unique combinations across Gender and Smoker identify four groups of patients:
female nonsmokers, female smokers, male nonsmokers, and male smokers. Summarize
the four groups and their mean weights in a table.

[G,gender,smoker] = findgroups(Gender,Smoker);
T = table(gender,smoker,meanWeight)

T = 4x3 table

gender smoker meanWeight
Female false 130.32
Female true 130.92
Male false 180.04

Split Data into Groups and Calculate Statistics

Male true 181.14

T.gender contains categorical values, and T.smoker contains logical values. The data
types of these table variables match the data types of Gender and Smoker respectively.

Calculate body mass index (BMI) for the four groups of patients. Define a function that
takes Height and Weight as its two input arguments, and that calculates BMI.

meanBMIfcn = @Ch,w)mean((w ./ (h."2)) * 703);
BMI splitapply(meanBMIfcn,Height,Weight,G)

BMI =

21.6721
21.6686
26.5775
26.4584

Group Patients Based on Self-Reports

Calculate the fraction of patients who report their health as either Poor or Fair. First,
use splitapply to count the number of patients in each group: female nonsmokers,
female smokers, male nonsmokers, and male smokers. Then, count only those patients
who report their health as either Poor or Fair, using logical indexing on S and G. From
these two sets of counts, calculate the fraction for each group.

[G,gender,smoker] = findgroups(Gender,Smoker);
S = SelfAssessedHealthStatus;

1 = ismember(S,{"Poor", "Fair"});

numPatients = splitapply(@numel,S,G);

numPF = splitapply(@numel,S(1),G(1));
numPF./numPatients

ans =

0.2500

0.3846

0.3077

0.1429

Compare the standard deviation in Diastol ic readings of those patients who report
Poor or Fair health, and those patients who report Good or Excel lent health.

9-47

9 Tables

9-48

stdDiastolicPF
stdDiastolicGE

splitapply(@std,Diastolic(l1),G(l1));
splitapply(@std,Diastolic(~1),G(~1));

Collect results in a table. For these patients, the female nonsmokers who report Poor or
Fair health show the widest variation in blood pressure readings.

T = table(gender,smoker ,numPatients,numPF,stdDiastolicPF,stdDiastolicGE,BMI)

T = 4x7 table

gender smoker numPatients numPF stdDiastolicPF stdDiastolicGE
Female false 40 10 6.8872 3.9012
Female true 13 5 5.4129 5.0409
Male false 26 8 4.2678 4.8159
Male true 21 3 5.6862 5.258
See Also

Ffindgroups | splitapply

Related Examples
. “Split Table Data Variables and Apply Functions” on page 9-49

More About
. “Grouping Variables To Split Data” on page 9-61

Split Table Data Variables and Apply Functions

Split Table Data Variables and Apply Functions

This example shows how to split power outage data from a table into groups by region
and cause of the power outages. Then it shows how to apply functions to calculate
statistics for each group and collect the results in a table.

Load Power Outage Data

The sample file, outages.csv, contains data representing electric utility outages in the
United States. The file contains six columns: Region, OutageTime, Loss, Customers,
RestorationTime, and Cause. Read outages.csv into a table.

T = readtable(“outages.csv™);

Convert Region and Cause to categorical arrays, and OutageTime and
RestorationTime to datetime arrays. Display the first five rows.

T.Region = categorical(T-Region);

T.Cause = categorical(T.Cause);

T.OutageTime = datetime(T.OutageTime);
T.RestorationTime = datetime(T.RestorationTime);
T(1:5,:)

ans = 5x6 table
Region OutageTime Loss Customers RestorationTime (

SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 wintel

SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT wintel
SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 wintel
West 2004-04-06 05:44 434._81 3.4037e+05 2004-04-06 06:10 equipr
MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severt

Calculate Maximum Power Loss

Determine the greatest power loss due to a power outage in each region. The
findgroups function returns G, a vector of group numbers created from T.Region.
The splitapply function uses G to split T.LOSS into five groups, corresponding to the
five regions. splitapply applies the max function to each group and concatenates the
maximum power losses into a vector.

G = Ffindgroups(T-Region);
maxLoss = splitapply(@max,T.Loss,G)

9-49

9 Tables

9-50

maxLoss =

1.0e+04 *

.3141
.3418
.8767
.2796
.6659

P OONNDN

Calculate the maximum power loss due to a power outage by cause. To specify that
Cause is the grouping variable, use table indexing. Create a table that contains the
maximum power losses and their causes.

Tl = T(:,"Cause”);
[G,powerLosses] = findgroups(Tl);
powerLosses.maxLoss = splitapply(@max,T.Loss,G)

powerLosses = 710x2 table

Cause maxLoss
attack 582.63
earthquake 258.18
energy emergency 11638
equipment fault 16659
fire 872.96
severe storm 8767.3
thunder storm 23418
unknown 23141
wind 2796
winter storm 2883.7

powerLosses is a table because T1 is a table. You can append the maximum losses as
another table variable.

Calculate the maximum power loss by cause in each region. To specify that Region and
Cause are the grouping variables, use table indexing. Create a table that contains the
maximum power losses and display the first 15 rows.

T1 = T(:,{"Region®,"Cause"});
[G,powerLosses] = Ffindgroups(Tl);
powerLosses._maxLoss = splitapply(@max,T.Loss,G);

Split Table Data Variables and Apply Functions

powerLosses(1:15,:)

ans = 15x3 table

Region Cause maxLoss
MidWest attack 0
MidWest energy emergency 2378.7
MidWest equipment fault 903.28
MidWest severe storm 6808.7
MidWest thunder storm 15128
MidWest unknown 23141
MidWest wind 2053.8
MidWest winter storm 669.25
NorthEast attack 405.62
NorthEast earthquake 0
NorthEast energy emergency 11638
NorthEast equipment fault 794_36
NorthEast fire 872.96
NorthEast severe storm 6002 .4
NorthEast thunder storm 23418

Calculate Number of Customers Impacted

Determine power-outage impact on customers by cause and region. Because T.LosS
contains NaN values, wrap sum in an anonymous function to use the "omitnan® input
argument.

osumfFcn = @(X) (sum(x, "omitnan®));
powerLosses.totalCustomers = splitapply(osumFcn,T._Customers,G);
powerLosses(1:15,:)

ans = 15x4 table

Region Cause maxLoss totalCustomers
MidWest attack 0 0
MidWest energy emergency 2378.7 6.3363e+05
MidWest equipment fault 903.28 1.7822e+05
MidWest severe storm 6808.7 1.3511e+07
MidWest thunder storm 15128 4 .2563e+06
MidWest unknown 23141 3.9505e+06
MidWest wind 2053.8 1.8796e+06
MidWest winter storm 669.25 4.8887e+06

9-51

9 Tables

9-52

NorthEast
NorthEast
NorthEast
NorthEast
NorthEast
NorthEast
NorthEast

Calculate Mean Durations of Power Outages

attack
earthquake
energy emergency
equipment fault
fire

severe storm
thunder storm

405.62

11638
794_36
872.96
6002.4

23418

2181.8

0
1.4391e+05
3.9961e+05
6.1292e+05
2.7905e+07
2.1885e+07

Determine the mean durations of all U.S. power outages in hours. Add the mean
durations of power outages to powerLosses. Because T.RestorationTime has NaT

values, omit the resulting NaN values when calculating the mean durations.

D
H

hours(D);

omeanFcn = @(x)(mean(x, "omitnan®));

T.RestorationTime - T.OutageTime;

powerLosses.meanOutage = splitapply(omeanFcn,H,G);
powerLosses(1:15,:)

ans = 15x5 table

Region Cause maxLoss totalCustomers meanOutage
MidWest attack 0 0 335.02
MidWest energy emergency 2378.7 6.3363e+05 5339.3
MidWest equipment fault 903.28 1.7822e+05 17.863
MidWest severe storm 6808.7 1.3511e+07 78.906
MidWest thunder storm 15128 4_.2563e+06 51.245
MidWest unknown 23141 3.9505e+06 30.892
MidWest wind 2053.8 1.8796e+06 73.761
MidWest winter storm 669.25 4.8887e+06 127.58
NorthEast attack 405.62 2181.8 5.5117
NorthEast earthquake 0 0 0
NorthEast energy emergency 11638 1.4391e+05 77.345
NorthEast equipment fault 794 .36 3.9961e+05 87.204
NorthEast fire 872.96 6.1292e+05 4.0267
NorthEast severe storm 6002.4 2.7905e+07 2163.5
NorthEast thunder storm 23418 2.1885e+07 46.098

See Also

findgroups | rowfun | splitapply | varfun

Split Table Data Variables and Apply Functions

Related Examples
. “Access Data in a Table” on page 9-33

. “Calculations on Tables” on page 9-41

“Split Data into Groups and Calculate Statistics” on page 9-45

More About
. “Grouping Variables To Split Data” on page 9-61

9-53

9 Tables

Advantages of Using Tables

9-54

Conveniently Store Mixed-Type Data in Single Container

You can use the table data type to collect mixed-type data and metadata properties,
such as variable name, row names, descriptions, and variable units, in a single container.
Tables are suitable for column-oriented or tabular data that is often stored as columns

in a text file or in a spreadsheet. For example, you can use a table to store experimental
data, with rows representing different observations and columns representing different
measured variables.

Tables consist of rows and column-oriented variables. Each variable in a table can have a
different data type and a different size, but each variable must have the same number of
rows.

For example, load sample patients data.

load patients

Then, combine the workspace variables, Systolic and Diastolic into a single
BloodPressure variable and convert the workspace variable, Gender, from a cell array
of character vectors to a categorical array.

BloodPressure = [Systolic Diastolic];
Gender = categorical (Gender);

whos("Gender* , "Age”, "Smoker"*, "BloodPressure™)

Name Size Bytes Class Attributes
Age 100x1 800 double

BloodPressure 100x2 1600 double

Gender 100x1 346 categorical

Smoker 100x1 100 logical

The variables Age, BloodPressure, Gender, and Smoker have varying data types and
are candidates to store in a table since they all have the same number of rows, 100.

Now, create a table from the variables and display the first five rows.

T = table(Gender,Age,Smoker ,BloodPressure);
T(1:5,:)

ans = 5x4 table
Gender Age Smoker BloodPressure

Advantages of Using Tables

Male 38 true 124 93
Male 43 false 109 77
Female 38 false 125 83
Female 40 false 117 75
Female 49 false 122 80

The table displays in a tabular format with the variable names at the top.

Each variable in a table is a single data type. If you add a new row to the table,
MATLAB® forces consistency of the data type between the new data and the
corresponding table variables. For example, if you try to add information for a new
patient where the first column contains the patient's age instead of gender, as in the
expression T(end+1,:) = {37,{"Female"},true,[130 84]}, then you receive the
error:

Invalid RHS for assignment to a categorical array.

The error occurs because MATLAB® cannot assign numeric data, 37, to the categorical
array, Gender.

For comparison of tables with structures, consider the structure array, StructArray,
that is equivalent to the table, T.

StructArray = table2struct(T)

StructArray = 100x1 struct array with fields:
Gender
Age
Smoker
BloodPressure

Structure arrays organize records using named fields. Each field's value can have
a different data type or size. Now, display the named fields for the first element of
StructArray.

StructArray(1)

ans = struct with fields:
Gender: Male
Age: 38
Smoker: 1

9-55

9 Tables

9-56

BloodPressure: [124 93]

Fields in a structure array are analogous to variables in a table. However, unlike with
tables, you cannot enforce homogeneity within a field. For example, you can have some
values of S.Gender that are categorical array elements, Male or Female, others that are
character vectors, "Male® or "Female”, and others that are integers, O or 1.

Now consider the same data stored in a scalar structure, with four fields each containing
one variable from the table.

ScalarStruct = struct(...
"Gender” ,{Gender}, . ..
"Age” ,Age, - - .
“Smoker*® ,Smoker, ...
"BloodPressure” ,BloodPressure)

ScalarStruct = struct with fields:
Gender: [100x1 categorical]

Age: [100x1 double]

Smoker: [100x1 logical]

BloodPressure: [100x2 double]

Unlike with tables, you cannot enforce that the data is rectangular. For example, the
field ScalarStruct.Age can be a different length than the other fields.

A table allows you to maintain the rectangular structure (like a structure array) and
enforce homogeneity of variables (like fields in a scalar structure). Although cell arrays
do not have named fields, they have many of the same disadvantages as structure arrays
and scalar structures. If you have rectangular data that is homogeneous in each variable,
consider using a table. Then you can use numeric or named indexing, and you can use
table properties to store metadata.

Access Data Using Numeric or Named Indexing

You can index into a table using parentheses, curly braces, or dot indexing. Parentheses
allow you to select a subset of the data in a table and preserve the table container.
Curly braces and dot indexing allow you to extract data from a table. Within each table
indexing method, you can specify the rows or variables to access by name or by numeric
index.

Consider the sample table from above. Each row in the table, T, represents a different
patient. The workspace variable, LastName, contains unique identifiers for the 100 rows.

Advantages of Using Tables

Add row names to the table by setting the RowNames property to LastName and display
the first five rows of the updated table.

T.Properties.RowNames = LastName;

T(1:5,:)
ans = 5x4 table
Gender Age Smoker BloodPressure

Smith Male 38 true 124 93
Johnson Male 43 false 109 77
Williams Female 38 false 125 83
Jones Female 40 false 117 75
Brown Female 49 false 122 80

In addition to labeling the data, you can use row and variable names to access data in
the table. For example, use named indexing to display the age and blood pressure of the
patients Wi Il 1ams and Brown.

T "Williams*®, "Brown*"},{"Age", "BloodPressure*"})

ans = 2x2 table

Age BloodPressure
Williams 38 125 83
Brown 49 122 80

Now, use numeric indexing to return an equivalent subtable. Return the third and fifth
row from the second and fourth variables.

T(3:2:5,2:2:4)

ans = 2x2 table

Age BloodPressure
Williams 38 125 83
Brown 49 122 80

With cell arrays or structures, you do not have the same flexibility to use named or
numeric indexing.

9-57

9 Tables

9-58

* With a cell array, you must use strcmp to find desired named data, and then you can
index into the array.

* With a scalar structure or structure array, it is not possible to refer to a field by
number. Furthermore, with a scalar structure, you cannot easily select a subset of
variables or a subset of observations. With a structure array, you can select a subset
of observations, but you cannot select a subset of variables.

+ With a table, you can access data by named index or by numeric index. Furthermore,
you can easily select a subset of variables and a subset of rows.

For more information on table indexing, see “Access Data in a Table”.
Use Table Properties to Store Metadata

In addition to storing data, tables have properties to store metadata, such as variable
names, row names, descriptions, and variable units. You can access a property using
T.Properties.PropName, where T is the name of the table and PropName is one of the
table properties.

For example, add a table description, variable descriptions, and variable units for Age.

T.Properties.Description = "Simulated Patient Data“”;

T.Properties.VariableDescriptions = ...
{"Male or Female*
"true or false"
"Systolic/Diastolic™};

T.Properties.VariableUnits{"Age"} "Yrs*®;

Individual empty character vectors within the cell array for VariableDescriptions
indicate that the corresponding variable does not have a description. For more
information, see Table.

To print a table summary, use the summary function.

summary(T)

Description: Simulated Patient Data
Variables:

Gender: 100x1 categorical

Advantages of Using Tables

Description: Male or Female
Values:

Female 53
Male 47

Age: 100x1 double

Units: Yrs

Values:
Min 25
Median 39
Max 50

Smoker: 100x1 logical

Description: true or false

Values:
True 34
False 66

BloodPressure: 100x2 double

Description: Systolic/Diastolic

Values:
BloodPressure 1 BloodPressure 2
Min 109 68
Median 122 81.5
Max 138 99

Structures and cell arrays do not have properties for storing metadata.

See Also

summary | table

Related Examples
. “Create and Work with Tables” on page 9-2

9-59

9 Tables

. “Modify Units, Descriptions and Table Variable Names” on page 9-29
. “Access Data in a Table” on page 9-33

9-60

Grouping Variables To Split Data

Grouping Variables To Split Data

You can use grouping variables to split data variables into groups. Typically, selecting
grouping variables is the first step in the Split-Apply-Combine workflow. You can split
data into groups, apply a function to each group, and combine the results. You also
can denote missing values in grouping variables, so that corresponding values in data
variables are ignored.

Grouping Variables

Grouping variables are variables used to group, or categorize, observations—that is, data
values in other variables. A grouping variable can be any of these data types:

* Numeric, logical, categorical, datetime, or duration vector

* Cell array of character vectors

+ Table, with table variables of any data type in this list

Data variables are the variables that contain observations. A grouping variable must

have a value corresponding to each value in the data variables. Data values belong to the
same group when the corresponding values in the grouping variable are the same.

This table shows examples of data variables, grouping variables, and the groups that you
can create when you split the data variables using the grouping variables.

Data Variable Grouping Variable Groups of Data

[5 10 15 20 25 30] |[0 0 0 0 1 1] [5 10 15 20] [25 30]
[10 20 30 40 50 60] |[1 3 3 1 2 1] [10 40 60] [50] [20 30]
[64 72 67 69 64 68] |{"F","M","F","M","F","F{[64 67 64 68] [72 69]

You can give groups of data meaningful names when you use cell arrays of character
vectors or categorical arrays as grouping variables. A categorical array is an efficient and
flexible choice of grouping variable.

Group Definition
Typically, there are as many groups as there are unique values in the grouping variable.

(A categorical array also can include categories that are not represented in the data.) The
groups and the order of the groups depend on the data type of the grouping variable.

9-61

9 Tables

9-62

+ For numeric, logical, datetime, or duration vectors, or cell arrays of character
vectors, the groups correspond to the unique values sorted in ascending order.

+ For categorical arrays, the groups correspond to the unique values observed in the
array, sorted in the order returned by the categories function.

The findgroups function can accept multiple grouping variables, for example G =

findgroups(Al,A2). You also can include multiple grouping variables in a table,

for example T = table(Al1,A2); G = Ffindgroups(T). The Findgroups function

defines groups by the unique combinations of values across corresponding elements of

the grouping variables. Findgroups decides the order by the order of the first grouping

variable, and then by the order of the second grouping variable, and so on. For example,

ifAl = {"a","a","b","b"}and A2 = [0 1 O 0], then the unique values across the

grouping variables are "a® 0, "a" 1, and "b" 0, defining three groups.

The Split-Apply-Combine Workflow

After you select grouping variables and split data variables into groups, you can apply
functions to the groups and combine the results. This workflow is called the Split-Apply-
Combine workflow. You can use the Findgroups and splitapply functions together to
analyze groups of data in this workflow. This diagram shows a simple example using the
grouping variable Gender and the data variable Height to calculate the mean height by
gender.

The Findgroups function returns a vector of group numbers that define groups based
on the unique values in the grouping variables. splitapply uses the group numbers to
split the data into groups efficiently before applying a function.

Grouping Variables To Split Data

G=findgroups(Gender) meanHeight =splitapply(@mean,Height ,G)
T r - ~
Famale
LastWNamsa Height Gender G 64
'"Williams ' 64 ‘Female’ l fﬁfﬁ J1 \\‘ meanHeight
‘Smith’ 72 ‘Male’ M &
‘Jones ' a7 ‘Female " oo 65.750
‘Johnson’ (] ‘Male”’ 2 TO.H00
'Brown' 64 ‘Famale’ 1 Hﬁ—‘“"‘-\._* Male ,_,--""'f_)
‘Davis’ 68 ‘Famale’ 1
79
649
Missing Group Values

Grouping variables can have missing values. This table shows the missing value
indicator for each data type. If a grouping variable has missing values, then findgroups
assigns NaN as the group number, and splitapply ignores the corresponding values in

the data variables.

Grouping Variable Data Type Missing Value Indicator
Numeric NaN

Logical (Cannot be missing)
Categorical <undefined>
datetime NaT

duration NaN

Cell array of character vectors "

See Also

findgroups | rowfun | splitapply | varfun

Related Examples

. “Access Data in a Table” on page 9-33

9-63

9 Tables

. “Split Table Data Variables and Apply Functions” on page 9-49
. “Split Data into Groups and Calculate Statistics” on page 9-45

9-64

Changes to DimensionNames Property in R2016b

Changes to DimensionNames Property in R2016b

The table data type is suitable for collecting column-oriented, heterogeneous data in a
single container. Tables also contain metadata properties such as variable names, row
names, dimension names, descriptions, and variable units. Starting in R2016b, you can
use the dimension names to access table data and metadata using dot subscripting. To
support that, the dimension names must satisfy the same requirements as the variable
names. For backwards compatibility, tables enforce those restrictions by automatically
modifying dimension names when needed.

Create a table that has row names and variable names.

Number = [8; 21; 13; 20; 11];

Name = {"Van Buren®"; “Arthur®; "Fillmore®; "Garfield"; "Polk"};

Party = categorical({"Democratic”; "Republican”; "Whig"; "Republican”; "Republican});
T = table(Number,Party, "RowNames" ,Name)

T =
Number Party
Van Buren 8 Democratic
Arthur 21 Republican
Fillmore 13 Whig
Garfield 20 Republican
Polk 11 Republican

Display its properties, including the dimension names. The default values of the
dimension names are "Row"™ and "Variables”.

T.Properties

ans =

struct with fields:
Description: **
UserData: []
DimensionNames: {"Row" *"Variables"}
VariableNames: {"Number® “Party"}
VariableDescriptions: {}
VariableUnits: {}
RowNames: {5x1 cell}

9-65

9 Tables

Starting in R2016b, you can assign new names to the dimension names, and use them to
access table data. Dimension names must be valid MATLAB identifiers, and must not be
one of the reserved names, "Properties”, "RowNames”, or "VariableNames".

Assign a new name to the first dimension name, and use it to access the row names of the
table.

T.Properties.DimensionNames{1} = "Name~;
T.Name

ans =
5x1 cell array

"Van Buren*
"Arthur-*
"Fillmore~
"Garfield”
"Polk"

Create a new table variable called Name. When you create the variable, the table modifies
its first dimension name to prevent a conflict. The updated dimension name becomes
Name_1.

T{:,"Name"} = {"Martin®; "Chester”; "Millard®; "James"; "James"}

Warning: DimensionNames property was modified to avoid conflicting dimension and varial
Considerations for Using Tables for more details. This will become an error in a futur

T =
Number Party Name
Van Buren 8 Democratic "Martin®
Arthur 21 Republican "Chester-”
Fillmore 13 Whig "Millard®
Garfield 20 Republican "James*®
Polk 11 Republican "James*®

T.Properties.DimensionNames

ans =

1x2 cell array

9-66

Changes to DimensionNames Property in R2016b

"Name_1" "Data”

Similarly, if you assign a dimension name that is not a valid MATLAB identifier, the
name is modified.

T.Properties.DimensionNames{1} = “Last Name~";
T.Properties.DimensionNames

Warning: DimensionNames property was modified to make the name "Last Name®™ a valid MATI
Considerations for Using Tables for more details. This will become an error in a futur

ans =
1x2 cell array
"LastName* "Data*

In R2016b, tables raise warnings when dimension names are not valid identifiers, or
conflict with variable names or reserved names, so that you can continue to work with
code and tables created with previous releases. If you encounter these warnings, it is
recommended that you update your code to avoid them.

9-67

Timetables

“Create Timetables” on page 10-2

“Resample and Aggregate Data in Timetable” on page 10-6

“Combine Timetables and Synchronize Their Data” on page 10-10

“Select Timetable Data by Row Time and Variable Type” on page 10-17

“Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-24

“Using Row Labels in Table and Timetable Operations” on page 10-34

] 0 Timetables

Create Timetables

10-2

This example shows how to create a timetable, combine timetables, and adjust the data
from multiple timetables to a common time vector. The common time vector can contain
the times from either or both timetables, or it can be an entirely new time vector that
you specify. The example shows how to compute and display a daily mean for weather
measurements contained in different timetables.

A timetable is a type of table that associates a time with each row. A timetable can store
column-oriented data variables that have different data types and sizes, so long as each
variable has the same number of rows. In addition, timetables provide time-specific
functions to combine, subscript into, and adjust their data.

Import Timetables from Files

Load air quality data and weather measurements into two different timetables. The
dates of the measurements range from November 15, 2015, to November 19, 2015. The
air quality data come from a sensor inside a building, while the weather measurements
come from sensors outside.

Read the air quality data from a table with the readtable function. Then convert
it from a table to a timetable with the table2timetable function. The readtable
function returns a table only, not a timetable.

indoors
indoors

readtable(fullfile(matlabroot, "examples™, "matlab”, "indoors.csv™));
table2timetable(indoors);

You also can create a timetable from an M-by-N array with the array2timetable
function, or from workspace variables with the timetable function.

Display the first five rows of indoors. Each row of the timetable has a time that labels
that row of data.

indoors(1:5,:)

ans = 5x2 timetable

Time Humidity AirQuality
2015-11-15 00:00:24 36 80
2015-11-15 01:13:35 36 80
2015-11-15 02:26:47 37 79

Create Timetables

2015-11-15 03:39:59 37 82
2015-11-15 04:53:11 36 80

Load the timetable with weather measurements. Display the first five rows of outdoors.

load(fullfile(matlabroot, "examples”®, "matlab”, "outdoors®));
outdoors(1:5,:)

ans = 5x3 timetable

Time Humidity TemperatureF PressureHg
2015-11-15 00:00:24 49 51.3 29.61
2015-11-15 01:30:24 48.9 51.5 29.61
2015-11-15 03:00:24 48.9 51.5 29.61
2015-11-15 04:30:24 48.8 51.5 29.61
2015-11-15 06:00:24 48.7 51.5 29.6

Synchronize Timetables

The timetables, indoors and outdoors, contain different measurements taken inside
and outside a building at different times. Combine all the data into one timetable with
the synchronize function.

tt = synchronize(indoors,outdoors);

tt(1:5,:)
ans = 5x5 timetable
Time Humidity_indoors AirQuality Humidity_outdoors Tempe
2015-11-15 00:00:24 36 80 49 51.3
2015-11-15 01:13:35 36 80 NaN NaN
2015-11-15 01:30:24 NaN NaN 48.9 51.5
2015-11-15 02:26:47 37 79 NaN NaN
2015-11-15 03:00:24 NaN NaN 48.9 51.5

The output timetable, tt contains all the times from both timetables. synchronize
puts a missing data indicator where there are no data values to place in tt. When both
input timetables have a variable with the same name, such as Humidity, synchronize
renames both variables and adds both to the output timetable.

10-3

] 0 Timetables

10-4

Synchronize the timetables again, and this time fill in missing data values with linear
interpolation.

ttLinear = synchronize(indoors,outdoors, "union”,"linear”);
ttLinear(1:5,:)

ans = 5x5 timetable

Time Humidity_indoors AirQuality Humidity_ outdoors Tempe
2015-11-15 00:00:24 36 80 49 51
2015-11-15 01:13:35 36 80 48.919 51 ._4¢
2015-11-15 01:30:24 36.23 79.77 48.9 51
2015-11-15 02:26:47 37 79 48.9 51
2015-11-15 03:00:24 37 80.378 48.9 51

Adjust Data in One Timetable

You also can adjust the data in a single timetable to a new time vector. Calculate the
means of the variables in ttLinear over six-hour intervals with the retime function. If
any rows have NaN values after you adjust the data, remove them with the rmmissing
function.

tv = [datetime(2015,11,15):hours(6):datetime(2015,11,18)];
ttHourly = retime(ttLinear,tv, mean”);
ttHourly = rmmissing(ttHourly);

Plot Timetable Data

Normalize the data in ttHourly to the mean for each variable in the timetable. Plot
the mean daily values of these measurements. You can use the Variables property of a
timetable to access the variables. ttHourly_Variables returns the same variables as
ttHourly{:,:}.

ttMeanVars = ttHourly._Variables./mean(ttHourly.Variables);
plot(ttHourly._Time, ttMeanvars);
legend(ttHourly_Properties.VariableNames, " Interpreter®, "none®);
xlabel("Time");

ylabel ("Normalized Weather Measurements®);

title("Mean Daily Weather Trends®);

Create Timetables

Mormalized Weather Measurements

Mean Daily Weather Trends

1.02
Humidity _indoors
1045+ AirCuality .
Humidity outdoors
TemperatureF
1.1 A PressureHg
1.005 7
1 N
0.995 7
0.99 n
0.985 7
0.98 ' '
MNov 15 MNov 16 MNov 17 Nov 18
Time 2015
See Also

retime | rmmissing | synchronize | table2timetable | timerange | timetable

Related Examples

. “Resample and Aggregate Data in Timetable” on page 10-6

. “Combine Timetables and Synchronize Their Data” on page 10-10

. “Select Timetable Data by Row Time and Variable Type” on page 10-17

. “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-24

10-5

] 0 Timetables

Resample and Aggregate Data in Timetable

10-6

This example shows how to resample and aggregate data in a timetable. A timetable is a
type of table that associates a time with each row. A timetable can store column-oriented
data variables that have different data types and sizes, so long as each variable has the
same number of rows. With the retime function, you can resample timetable data, or
aggregate timetable data into time bins you specify.

Import Timetable

Load a timetable containing weather measurements taken from November 15, 2015,
to November 19, 2015. The timetable contains humidity, temperature, and pressure
readings taken over this time period.

load(fullfile(matlabroot, "examples”, "matlab”, "outdoors®));
outdoors(1:5,:)

ans = 5x3 timetable

Time Humidity TemperatureF PressureHg
2015-11-15 00:00:24 49 51.3 29.61
2015-11-15 01:30:24 48.9 51.5 29.61
2015-11-15 03:00:24 48.9 51.5 29.61
2015-11-15 04:30:24 48.8 51.5 29.61
2015-11-15 06:00:24 48.7 51.5 29.6

Determine if the timetable is regular. A regular timetable is one in which the differences
between all consecutive row times are the same. outdoors is not a regular timetable.

TF

isregular(outdoors)

TF

logical

Find the differences in the time steps. They vary between half a minute and an hour and
a half.

dt

unique(diff(outdoors.Time))

dt = 3x71 duration array
00:00:24
01:29:36

Resample and Aggregate Data in Timetable

01:30:00

Resample Timetable with Interpolation

Adjust the data in the timetable with the retime function. Specify an hourly time vector.
Interpolate the timetable data to the new row times.

TT = retime(outdoors, “hourly”,“spline®);

TT(1:5,:)
ans = 5x3 timetable
Time Humidity TemperatureF PressureHg

2015-11-15 00:00:00 49.001 51.298 29.61
2015-11-15 01:00:00 48.909 51.467 29.61
2015-11-15 02:00:00 48.902 51.51 29.61
2015-11-15 03:00:00 48.9 51.5 29.61
2015-11-15 04:00:00 48.844 51.498 29.611

Resample Timetable with Nearest Neighbor Values

Specify an hourly time vector for TT. For each row in TT, copy values from the
corresponding row in outdoors whose row time is nearest.

TT = retime(outdoors, "hourly®, "nearest®);

TT(1:5,:)
ans = 5x3 timetable
Time Humidity TemperatureF PressureHg

2015-11-15 00:00:00 49 51.3 29.61
2015-11-15 01:00:00 48.9 51.5 29.61
2015-11-15 02:00:00 48.9 51.5 29.61
2015-11-15 03:00:00 48.9 51.5 29.61
2015-11-15 04:00:00 48.8 51.5 29.61

Aggregate Timetable Data and Calculate Daily Mean

The retime function provides aggregation methods, such as mean. Calculate the daily
means for the data in outdoors.

10-7

10 Timetables

10-8

TT = retime(outdoors, "daily®, "mean®);

TT

TT = 4x3 timetable

Time Humidity TemperatureF PressureHg

2015-11-15 00:00:00 48.931 51.394 29.607
2015-11-16 00:00:00 47.924 51.571 29.611
2015-11-17 00:00:00 48.45 51.238 29.613
2015-11-18 00:00:00 49.5 50.8 29.61

Aggregate Timetable Data to Different Time Vector

Calculate the means over six-hour time intervals. Specify a time vector to use with the
retime function. Specify a format for the time vector to display both date and time when
you display the timetable.

tv = datetime(2015,11,15):hours(6):datetime(2015,11,18);
tv.Format = “dd-MMM-yyyy HH:mm:ss*";
TT = retime(outdoors,tv,"mean”);

TT(1:5,:)
ans = 5x3 timetable
Time Humidity TemperatureF PressureHg

15-Nov-2015 00:00:00 48.9 51.45 29.61
15-Nov-2015 06:00:00 48.9 51.45 29.6
15-Nov-2015 12:00:00 49.025 51.45 29.61
15-Nov-2015 18:00:00 48.9 51.225 29.607
16-Nov-2015 00:00:00 48.5 51.4 29.61

See Also

retime | synchronize | table2timetable | timetable

Related Examples

. “Create Timetables” on page 10-2

. “Combine Timetables and Synchronize Their Data” on page 10-10

. “Select Timetable Data by Row Time and Variable Type” on page 10-17

Resample and Aggregate Data in Timetable

“Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-24

10-9

] 0 Timetables

Combine Timetables and Synchronize Their Data

You can combine timetables and synchronize their data in a variety of ways. You can
concatenate timetables vertically or horizontally, but only when they contain the same
row times or timetable variables. Use the synchronize function to combine timetables
with different row times and timetable variables. synchronize creates a timetable
that contains all variables from all input timetables. It then synchronizes the data from
the input timetables to the row times of the output timetable. synchronize can fill

in missing elements of the output timetable with missing data indicators, with values
copied from their nearest neighbors, or with interpolated values. synchronize also can
aggregate timetable data over time bins you specify.

Concatenate Timetables Vertically

Load timetables from openPricesSmall and concatenate them vertically. The
timetables are opWeekl and opWeek2. They contain opening prices for some stocks
during the first and second weeks of January 2016.

load(fullfile(matlabroot, "examples”, "matlab®, "openPricesSmall®));

Display the two timetables.

opWeek1
opWeekl = 5x2 timetable
Time AAPL FB
08-Jan-2016 09:00:00 98.55 99.88
07-Jan-2016 09:00:00 98.68 100.5

06-Jan-2016 09:00:00 100.56 101.13
05-Jan-2016 09:00:00 105.75 102.89
04-Jan-2016 09:00:00 102.61 101.95

opWeek?2
opWeek2 = 5x2 timetable
Time AAPL FB
14-Jan-2016 09:00:00 97.96 95.85
13-Jan-2016 09:00:00 100.32 100.58
12-Jan-2016 09:00:00 100.55 99

10-10

Combine Timetables and Synchronize Their Data

11-Jan-2016 09:00:00
08-Jan-2016 09:00:00

98.97
98.55

97.91
99.88

Concatenate the timetables. You can concatenate timetables vertically when they have
the same variables. The row times label the rows and are not contained in a timetable

variable. Note that the row times of a timetable can be out of order and do not need
to be regularly spaced. For example, op does not include days that fall on weekends.

A timetable also can contain duplicate times. op contains two rows for 08-Jan-2016

09:00:00.

op = [opWeek2;opWeekl]

op = 10x2 timetable

Time AAPL FB

14-Jan-2016 09:00:00 97.96 95.85
13-Jan-2016 09:00:00 100.32 100.58
12-Jan-2016 09:00:00 100.55 99
11-Jan-2016 09:00:00 98.97 97.91
08-Jan-2016 09:00:00 98.55 99.88
08-Jan-2016 09:00:00 98.55 99.88
07-Jan-2016 09:00:00 98.68 100.5
06-Jan-2016 09:00:00 100.56 101.13
05-Jan-2016 09:00:00 105.75 102.89
04-Jan-2016 09:00:00 102.61 101.95

Concatenate Timetables Horizontally

You also can concatenate timetables horizontally. The timetables must have the same
row times and different variables.

Display the timetable opOtherStocks. The timetable has the same row times as
opWeek1, but variables for different stocks.

opOtherStocks
opOtherStocks = 5x2 timetable
Time MSFT TWTR
08-Jan-2016 09:00:00 52.37 20.51
07-Jan-2016 09:00:00 52.7 21

10-11

10 Timetables

06-Jan-2016 09:00:00 54_32 21.62
05-Jan-2016 09:00:00 54.93 22.79
04-Jan-2016 09:00:00 54_32 22.64

Concatenate opWeekl and opOtherStock. The output timetable has one set of row
times and the variables from both timetables.

op = [opWeekl opOtherStocks]
op = 5x4 timetable
Time AAPL FB MSFT TWTR
08-Jan-2016 09:00:00 98.55 99.88 52.37 20.51
07-Jan-2016 09:00:00 98.68 100.5 52.7 21

06-Jan-2016 09:00:00 100.56 101.13 54.32 21.62
05-Jan-2016 09:00:00 105.75 102.89 54.93 22.79
04-Jan-2016 09:00:00 102.61 101.95 54.32 22.64

Synchronize Timetables and Indicate Missing Data

Load air quality data and weather measurements from two different timetables and
synchronize them. The dates of the measurements range from November 15, 2015, to
November 19, 2015. The air quality data come from a sensor inside a building, while the
weather measurements come from sensors outside.

load(fullfile(matlabroot, "examples”, "matlab”, "indoors®));
load(fullfile(matlabroot, "examples”, "matlab”, "outdoors®));

Display the first five lines of each timetable. They contain measurements of different
quantities taken at different times.

indoors(1:5,:)

ans = 5x2 timetable

Time Humidity AirQuality
2015-11-15 00:00:24 36 80
2015-11-15 01:13:35 36 80
2015-11-15 02:26:47 37 79
2015-11-15 03:39:59 37 82
2015-11-15 04:53:11 36 80

10-12

Combine Timetables and Synchronize Their Data

outdoors(1:5,:)

ans = 5x3 timetable

Time Humidity TemperatureF PressureHg
2015-11-15 00:00:24 49 51.3 29.61
2015-11-15 01:30:24 48.9 51.5 29.61
2015-11-15 03:00:24 48.9 51.5 29.61
2015-11-15 04:30:24 48.8 51.5 29.61
2015-11-15 06:00:24 48.7 51.5 29.6

Synchronize the timetables. The output timetable tt contains all the times from both
timetables. synchronize puts a missing data indicator where there are no data values
to place in tt. When both input timetables have a variable with the same name, such as
Humidity, synchronize renames both variables and adds both to the output timetable.

tt = synchronize(indoors,outdoors);

tt(1:5,:)
ans = 5x5 timetable
Time Humidity_indoors AirQuality Humidity_ outdoors Tempe
2015-11-15 00:00:24 36 80 49 51.3
2015-11-15 01:13:35 36 80 NaN NaN
2015-11-15 01:30:24 NaN NaN 48.9 51.5
2015-11-15 02:26:47 37 79 NaN NaN
2015-11-15 03:00:24 NaN NaN 48.9 51.5
Synchronize and Interpolate Data Values
Synchronize the timetables, and fill in missing timetable elements with linear
interpolation. To synchronize on a time vector that includes all times from both
timetables, specify "union” for the output times.
ttLinear = synchronize(indoors,outdoors, "union”,"linear");
ttLinear(1:5,:)
ans = 5x5 timetable
Time Humidity_indoors AirQuality Humidity_ outdoors Tempe

10-13

10 Timetables

2015-11-15 00:00:24 36 80 49 51
2015-11-15 01:13:35 36 80 48.919 51 ._4¢
2015-11-15 01:30:24 36.23 79.77 48.9 51
2015-11-15 02:26:47 37 79 48.9 51
2015-11-15 03:00:24 37 80.378 48.9 51

Synchronize to Different Times

Synchronize the timetables to an hourly time vector. The input timetables had irregular
row times. The output timetable has regular row times with one hour as the time step.

ttHourly = synchronize(indoors,outdoors, "hourly®,"linear®);
ttHourly(1:5,:)

ans = 5x5 timetable

Time Humidity_indoors AirQuality Humidity_ outdoors Tempe
2015-11-15 00:00:00 36 80 49 51.2¢
2015-11-15 01:00:00 36 80 48.934 51.4:
2015-11-15 02:00:00 36.634 79.366 48.9 51
2015-11-15 03:00:00 37 80.361 48.9 51
2015-11-15 04:00:00 36.727 81.453 48.834 51

Synchronize the timetables to a time vector that specifies half-hour intervals.

tv = [datetime(2015,11,15):minutes(30):datetime(2015,11,18)];
tv_Format = indoors.Time.Format;

ttHalfHour = synchronize(indoors,outdoors,tv, "linear”);
ttHalfHour(1:5,:)

ans = 5x5 timetable

Time Humidity_indoors AirQuality Humidity_ outdoors Tempe
2015-11-15 00:00:00 36 80 49 51.2¢
2015-11-15 00:30:00 36 80 48.967 51.3¢
2015-11-15 01:00:00 36 80 48.934 51.4:
2015-11-15 01:30:00 36.224 79.776 48.9 51.4¢
2015-11-15 02:00:00 36.634 79.366 48.9 51

10-14

Combine Timetables and Synchronize Their Data

Synchronize and Aggregate Data Values

Synchronize the timetables and calculate the daily means for all variables in the output
timetable.

ttDaily = synchronize(indoors,outdoors, “daily”, "mean”);

ttDaily
ttDaily = 4x5 timetable
Time Humidity_indoors AirQuality Humidity_outdoors Temp:e

2015-11-15 00:00:00 36.5 80.05 48.931 51.3¢
2015-11-16 00:00:00 36.85 80.35 47.924 51.5
2015-11-17 00:00:00 36.85 79.45 48.45 51.2:
2015-11-18 00:00:00 NaN NaN 49.5 50

Synchronize the timetables to six-hour time intervals and calculate means for each

interval.

tv = [datetime(2015,11,15):hours(6) :datetime(2015,11,18)];

tv.Format = indoors.Time.Format;

tt6éHours = synchronize(indoors,outdoors,tv, "mean”);

tt6éHours(1:5,:)

ans = 5x5 timetable

Time Humidity_indoors AirQuality Humidity_ outdoors Tempe

2015-11-15 00:00:00 36.4 80.2 48.9 51.:
2015-11-15 06:00:00 36.4 79.8 48.9 51 .
2015-11-15 12:00:00 36.6 80.4 49.025 51.:
2015-11-15 18:00:00 36.6 79.8 48.9 51.2:
2015-11-16 00:00:00 36.6 80.2 48.5 51

See Also

retime | synchronize | table2timetable | timetable

Related Examples
. “Create Timetables” on page 10-2

10-15

] 0 Timetables

. “Resample and Aggregate Data in Timetable” on page 10-6

“Select Timetable Data by Row Time and Variable Type” on page 10-17

. “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-24

10-16

Select Timetable Data by Row Time and Variable Type

Select Timetable Data by Row Time and Variable Type

A timetable is a type of table that associates a time with each row. You can subscript into
a timetable to select subsets of its data in a number of different ways. To select timetable
rows with row times that fall within a given time range, specify the time range using the
timerange function. Since a timetable is a table, you can index on rows and variables
using either smooth parentheses or curly braces. You can index on specific row times, or
select rows with row times that match specified times within a tolerance you set using
the withtol function. You can also subscript into a table or timetable to select all the
variables that match a type you specify with the vartype function. Finally, extract data
from a timetable into a matrix using the Variables property.

Create Timetable from File

Create a timetable from the sample file outages.csv, containing data representing
electric utility outages in the United States. Read the table from the file with the
readtable function. Convert T.Cause and T.Region into categorical arrays. Then
convert the table to a timetable using the table2timetable function. Display the first
five rows of the timetable. TT is a timetable containing outage data from February 2002
to January 2014.

T = readtable("outages.csv™);
T.Cause = categorical (T.Cause);
T.Region = categorical(T.-Region);
TT = table2timetable(T);
TT(1:5,:)

ans = 5x5 timetable
OutageTime Region Loss Customers RestorationTime (

2002-02-01 12:18 SouthWest 458.98 1.8202e+06 2002-02-07 16:50 wintel

2003-01-23 00:49 SouthEast 530.14 2.1204e+05 NaT wintel
2003-02-07 21:15 SouthEast 289.4 1.4294e+05 2003-02-17 08:14 wintel
2004-04-06 05:44 West 434.81 3.4037e+05 2004-04-06 06:10 equipr
2002-03-16 06:18 MidwWest 186.44 2.1275e+05 2002-03-18 23:23 severt

Summarize Timetable and Access Row Times

Display a summary of TT. It is a timetable that contains 1468 rows and five variables.

summary(TT)

10-17

10 Timetables

RowTimes:

OutageTime: 1468x1 datetime

Values:
Min 2002-02-01 12:18
Median 2010-03-18 21:05
Max 2014-01-15 02:41
Variables:

Region: 1468x1 categorical
Values:

MidWest 142
NorthEast 557
SouthEast 389
SouthWest 26
West 354

Loss: 1468x1 double

Values:
Min 0
Median 180.26
Max 23418
NumMissing 604

Customers: 1468x1 double

Values:
Min 0
Median 75765
Max 5.9689e+06
NumMissing 328

RestorationTime: 1468x1 datetime

Values:

Min 2002-02-07 16:50

10-18

Select Timetable Data by Row Time and Variable Type

Median 2010-03-31 10:54
Max 2042-09-18 23:31
NumMissing 29

Cause: 1468x1 categorical

Values:
attack 294
earthquake 2
energy emergency 188
equipment fault 156
fire 25
severe storm 338
thunder storm 201
unknown 24
wind 95
winter storm 145

Access the row times. The row times are not in a variable. Instead, the vector of row
times is a property of the timetable. However, you can access the row times with dot
syntax. TT.OutageTime is a 1468-by-1 vector of datetime values. Display the first five
rows of TT.OutageTime.

TT.OutageTime(1:5)

ans = 5x1 datetime array
2002-02-01 12:18
2003-01-23 00:49
2003-02-07 21:15
2004-04-06 05:44
2002-03-16 06:18

Subscript on Time Range

To select all timetable rows that fall in a time range, create a subscript as a helper, using
the timerange function. The start and end times you specify do not have to match any of
the row times in the timetable.

Select all rows with outages that occurred between January 2002 and December 2003.
Display the first five rows of TT2.

TR = timerange("2002-01-01%,"2003-12-31%);

10-19

10 Timetables

10-20

TT2

TT2(

ans

ans

ans

= TT(TR,2);
1:5,:)
= 5x5 timetable
OutageTime Region Loss Customers RestorationTime Cal
2002-02-01 12:18 SouthWest 458 .98 1.8202e+06 2002-02-07 16:50 wintel
2003-01-23 00:49 SouthEast 530.14 2.1204e+05 NaT wintel
2003-02-07 21:15 SouthEast 289.4 1.4294e+05 2003-02-17 08:14 wintel
2002-03-16 06:18 MidwWest 186.44 2.1275e+05 2002-03-18 23:23 severt
2003-06-18 02:49 West 0 0 2003-06-18 10:54 attacl
Display the last five rows of TT2.
TT2(end-4:end, :)
= 5x5 timetable
OutageTime Region Loss Customers RestorationTime (
2003-09-02 19:46 SouthEast 0 0 2003-09-16 22:25 severt
2003-09-15 14:56 MidWest 418.7 61045 2003-09-22 04:21 thund
2003-09-24 22:43 SouthWest 2576.9 9.4873e+05 2003-09-25 14:46 severt
2003-09-18 10:40 SouthWest 301.8 2.3973e+05 2003-09-27 08:17 severt
2003-10-11 19:36 SouthEast 309.8 93582 2003-10-11 19:49 energ)
TT2 is a timetable with only 98 rows, containing outage data only from 2002 and 2003.
Index on Specified Times
You can index into TT with datetime values or character vectors representing specific
times in TT.OutageTime. But when you do so, the times you specify must have exact
matches in the time vector, and only those times are selected. Index into TT on times for
the first and third rows of TT.
TT({"2002-02-01 12:18:00", "2003-02-07 21:15:00"},:)
= 2x5 timetable
OutageTime Region Loss Customers RestorationTime Cau
2002-02-01 12:18 SouthWest 458.98 1.8202e+06 2002-02-07 16:50 wintel

Select Timetable Data by Row Time and Variable Type

2003-02-07 21:15 SouthEast 289.4 1.4294e+05 2003-02-17 08:14 wintel

Index on Specified Times with Tolerances

Specify a tolerance when indexing on times. You can use the withtol function to create
a subscript as a helper. With the output of withtol, you can select row times that match
within the specified tolerance.

Index into TT on specified dates. Specify a tolerance of one day to return rows with row
times that are within one day of the specified dates. The times must be in a datetime or
duration vector, or in a cell array of character vectors that can be converted to datetime
or duration values. The tolerance must be specified as a duration, using a function such
as seconds, minutes, hours, or days.

rowTimes = {"2002-02-01","2003-02-07"};
S = withtol(rowTimes,days(1));
TT(S,:)

ans = 2x5 timetable
OutageTime Region Loss Customers RestorationTime Cal

2002-02-01 12:18 SouthWest 458.98 1.8202e+06 2002-02-07 16:50 wintel
2003-02-07 21:15 SouthEast 289.4 1.4294e+05 2003-02-17 08:14 wintel

Subscript by Variable Type

To select all timetable variables that are of a given type, create a subscript as a helper,
using the vartype function. You can specify variable types without having to specify
their names or positions in the timetable.

Select all variables that contain numeric data. TT2 contains only the variables Loss and
Customers. The other three variables of TT are either categorical or datetime variables.
Display the first five rows of TT2.

S = vartype(“numeric®);
TT2 = TT(:,S);
TT2(1:5,:)

ans = 5x2 timetable
OutageTime Loss Customers

10-21

10 Timetables

2002-02-01 12:18 458.98 1.8202e+06
2003-01-23 00:49 530.14 2.1204e+05
2003-02-07 21:15 289 .4 1.4294e+05
2004-04-06 05:44 434 .81 3.4037e+05
2002-03-16 06:18 186.44 2.1275e+05

Subscript both on a time range and by variable type.

TR = timerange("2002-01-01%,"2003-12-31%);
TT2 = TT(TR,S);
TT2(1:5,:)

ans = 5x2 timetable
OutageTime Loss Customers

2002-02-01 12:18 458.98 1.8202e+06
2003-01-23 00:49 530.14 2.1204e+05

2003-02-07 21:15 289 .4 1.4294e+05
2002-03-16 06:18 186.44 2.1275e+05
2003-06-18 02:49 0 0

Extract Data with Variables Property

Tables and timetables have a property, Variables, that you can use to extract data from
variables into a matrix, as long as the variables can be concatenated together.

Extract the numeric data from TT2 using the Variables property. A is a 1468-by-2
matrix of doubles. When you extract data from a timetable into an array, the row times
are not included.

1.0e+06 *

0.0005 1.8202
0.0005 0.2120
0.0003 0.1429
0.0002 0.2128

10-22

Select Timetable Data by Row Time and Variable Type

The result of TT2_Variables is the same as the result of using curly braces to extract
data, using the TT2{:, -} syntax.

You can concatenate the variables in TT2 into an array of doubles. However, TT

contains numeric, categorical, and datetime variables that cannot be concatenated. The
Variables property returns an error when variables cannot be concatenated. To avoid
such an error, you can subscript by variable type before using the Variables property.

Subscript into TT to select numeric variables and extract them into a matrix.

A = TT(:,vartype("numeric")).Variables;
A(1:5,3)

ans =
1.0e+06 *

0.0005 1.8202
0.0005 0.2120
0.0003 0.1429
0.0004 0.3404
0.0002 0.2128

See Also

retime | synchronize | table2timetable | timerange | timetable | vartype |
withtol

Related Examples

. “Create Timetables” on page 10-2

. “Resample and Aggregate Data in Timetable” on page 10-6

. “Combine Timetables and Synchronize Their Data” on page 10-10

. “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-24

10-23

] 0 Timetables

Clean Timetable with Missing, Duplicate, or Nonuniform Times

10-24

This example shows how to create a regular timetable from one that has missing,
duplicate, or nonuniform times. A timetable is a type of table that associates a time-
stamp, or row time, with each row of data. In a regular timetable, the row times are
sorted and unique, and differ by the same regular time step. The example also shows how
to export the data from a timetable for use with other functions.

Timetables can be irregular. They can contain rows that are not sorted by their row
times. Timetables can contain multiple rows with the same row time, though the rows
can have different data values. Even when row times are sorted and unique, they can
differ by time steps of different sizes. Timetables can even contain NaT or NaN values to
indicate missing row times.

Timetables provide a number of different ways to resolve missing, duplicate, or
nonuniform times, and to resample or aggregate data to regular row times.

* To find missing row times, use ismissing.

* To remove missing times and data, use rmmissing.

+ To sort a timetable by its row times, use Sortrows.

* To make a timetable with unique and sorted row times, use unique and retime.
* To remove duplicate times, specify a unique time vector and use retime.

* To make a regular timetable, specify a regular time vector and use retime.

Clean Timetable with Missing, Duplicate, or Nonuniform Times

Missing
unsorted
= .
duplicate — TT timetable {Time, Varl, , VarM)
nanuniform
unigue
i
ismissing recime
romissing
h 4
unigue
unsorted SOrtrows sorted retime sorted retime sorted
duplicate » duplicate » unigue unique
nonuniform nonuniform nonuniform uniform
retime
retime
Load Timetable

Load a sample timetable from the MAT-file badTimes that contains weather
measurements taken over several hours on June 9, 2016. The timetable includes
temperature, rainfall, and wind speed measurements taken at irregular times

throughout that day.

load(fullfile(matlabroot, "examples”, "matlab”, "badTimes"))

TT

TT = 12x3 timetable

Time Temp Rain WindSpeed
09-Jun-2016 06:01:04 73 0.01 2.3
09-Jun-2016 07:59:23 59 0.08 0.9
09-Jun-2016 09:53:57 59 0.03 3.4

10-25

10 Timetables

09-Jun-2016 09:53:57 67 0.03 3.4
NaT 56 0 0
09-Jun-2016 09:53:57 67 0.03 3.4
09-Jun-2016 08:49:10 62 0.01 2.7
09-Jun-2016 08:49:10 75.8 0.01 2.7
09-Jun-2016 08:49:10 82 0.01 2.7
09-Jun-2016 05:03:11 66.2 0.05 3
09-Jun-2016 08:49:10 67.2 0.01 2.7
09-Jun-2016 04:12:00 58.8 NaN NaN

Remove Rows with Missing Times

Remove rows that have NaT, or a missing value, as the row time. To find missing values
in the vector of row times, use the ismissing function. ismissing returns a logical
vector that contains 1 wherever TT.Time has a missing value. Index back into the
timetable to keep only those rows that do not have missing values as row times. Assign
those rows to TT2.

TF = ismissing(TT.Time);
TT2 = TT(~TF,:);

TT2
TT2 = 11x3 timetable
Time Temp Rain WindSpeed

09-Jun-2016 06:01:04 73 0.01 2.3
09-Jun-2016 07:59:23 59 0.08 0.9
09-Jun-2016 09:53:57 59 0.03 3.4
09-Jun-2016 09:53:57 67 0.03 3.4
09-Jun-2016 09:53:57 67 0.03 3.4
09-Jun-2016 08:49:10 62 0.01 2.7
09-Jun-2016 08:49:10 75.8 0.01 2.7
09-Jun-2016 08:49:10 82 0.01 2.7
09-Jun-2016 05:03:11 66.2 0.05 3
09-Jun-2016 08:49:10 67.2 0.01 2.7
09-Jun-2016 04:12:00 58.8 NaN NaN

This method removes only the rows that have missing row times. The table variables
might still have missing data values. For example, the last row of TT2 has NaN values for
the Rain and Windspeed variables.

10-26

Clean Timetable with Missing, Duplicate, or Nonuniform Times

Remove Rows with Missing Times or Missing Data

You can remove missing row times and missing data values using the rmmissing
function. rmmissing removes any timetable row that has a missing row time, missing
data values, or both.

Display the missing row time and missing data values of TT. Then remove all missing
values from TT.

TT
TT = 12x3 timetable
Time Temp Rain WindSpeed

09-Jun-2016 06:01:04 73 0.01 2.3
09-Jun-2016 07:59:23 59 0.08 0.9
09-Jun-2016 09:53:57 59 0.03 3.4
09-Jun-2016 09:53:57 67 0.03 3.4
NaT 56 0 0
09-Jun-2016 09:53:57 67 0.03 3.4
09-Jun-2016 08:49:10 62 0.01 2.7
09-Jun-2016 08:49:10 75.8 0.01 2.7
09-Jun-2016 08:49:10 82 0.01 2.7
09-Jun-2016 05:03:11 66.2 0.05 3
09-Jun-2016 08:49:10 67.2 0.01 2.7
09-Jun-2016 04:12:00 58.8 NaN NaN

TT = rmmissing(TT)

TT = 10x3 timetable

Time Temp Rain WindSpeed

09-Jun-2016 06:01:04 73 0.01 2.3
09-Jun-2016 07:59:23 59 0.08 0.9
09-Jun-2016 09:53:57 59 0.03 3.4
09-Jun-2016 09:53:57 67 0.03 3.4
09-Jun-2016 09:53:57 67 0.03 3.4
09-Jun-2016 08:49:10 62 0.01 2.7
09-Jun-2016 08:49:10 75.8 0.01 2.7
09-Jun-2016 08:49:10 82 0.01 2.7
09-Jun-2016 05:03:11 66.2 0.05 3
09-Jun-2016 08:49:10 67.2 0.01 2.7

10-27

10 Timetables

Sort Timetable and Determine Whether It Is Regular

Determine whether TT is sorted. Then, sort the timetable on its row times using the
sortrows function.

TF = issorted(TT)

TF = logical

0
TT = sortrows(TT)
TT = 10x3 timetable

Time Temp Rain WindSpeed

09-Jun-2016 05:03:11 66.2 0.05 3
09-Jun-2016 06:01:04 73 0.01 2.3
09-Jun-2016 07:59:23 59 0.08 0.9
09-Jun-2016 08:49:10 62 0.01 2.7
09-Jun-2016 08:49:10 75.8 0.01 2.7
09-Jun-2016 08:49:10 82 0.01 2.7
09-Jun-2016 08:49:10 67.2 0.01 2.7
09-Jun-2016 09:53:57 59 0.03 3.4
09-Jun-2016 09:53:57 67 0.03 3.4
09-Jun-2016 09:53:57 67 0.03 3.4

Determine whether TT is regular. A regular timetable has the same time interval
between consecutive row times. Even a sorted timetable can have time steps that are not
uniform.

TF

isregular(TT)

TF = logical

Display the differences between row times.
difF(TT.Time)

ans = 9x1 duration array

10-28

Clean Timetable with Missing, Duplicate, or Nonuniform Times

00:57:53
01:58:19
00:49:47
00:00:00
00:00:00
00:00:00
01:04:47
00:00:00
00:00:00

Remove Duplicate Rows

Timetables can have duplicate rows. Timetable rows are duplicates if they have the
same row times and the same data values. In this example, the last two rows of TT are
duplicates.

To remove the duplicate rows, use the unique function. unique returns the unique rows
and sorts them by their row times.

TT

unique(TT)

TT = 9x3 timetable
Time Temp Rain WindSpeed

09-Jun-2016 05:03:11 66.2 0.05 3
09-Jun-2016 06:01:04 73 0.01 2.3
09-Jun-2016 07:59:23 59 0.08 0.9
09-Jun-2016 08:49:10 62 0.01 2.7
09-Jun-2016 08:49:10 67.2 0.01 2.7
09-Jun-2016 08:49:10 75.8 0.01 2.7
09-Jun-2016 08:49:10 82 0.01 2.7
09-Jun-2016 09:53:57 59 0.03 3.4
09-Jun-2016 09:53:57 67 0.03 3.4

Find Rows with Duplicate Times and Different Data

Timetables can have rows with duplicate row times but different data values. In this
example, TT has several rows with the same row times but different values.

Find the rows that have duplicate row times. First, sort the row times and find
consecutive times that have no difference between them. Times with no difference

10-29

] 0 Timetables

10-30

between them are the duplicates. Index back into the vector of row times and return a
unique set of times that identify the duplicate row times in TT.

dupTimes = sort(TT.Time);
TF = (diff(dupTimes) == 0);
dupTimes = dupTimes(TF);
dupTimes = unique(dupTimes)

dupTimes = 2x71 datetime array
09-Jun-2016 08:49:10
09-Jun-2016 09:53:57

Index into the timetable to display the rows with duplicate row times. When you index on
times, the output timetable contains all rows with matching row times.

TT(dupTimes, :)

ans = 6x3 timetable

Time Temp Rain WindSpeed
09-Jun-2016 08:49:10 62 0.01 2.7
09-Jun-2016 08:49:10 67.2 0.01 2.7
09-Jun-2016 08:49:10 75.8 0.01 2.7
09-Jun-2016 08:49:10 82 0.01 2.7
09-Jun-2016 09:53:57 59 0.03 3.4
09-Jun-2016 09:53:57 67 0.03 3.4

Select First and Last Rows with Duplicate Times

Select either the first and the last of the rows with duplicate row times using the unique
and retime functions.

First, create a vector of unique row times from TT using the unique function.
uniqueTimes = unique(TT.Time);
Select the first row from each set of rows that have duplicate times.

TT2

retime(TT,uniqueTimes)

TT2 = 5x3 timetable
Time Temp Rain WindSpeed

Clean Timetable with Missing, Duplicate, or Nonuniform Times

09-Jun-2016 05:03:11 66.2 0.05 3
09-Jun-2016 06:01:04 73 0.01 2.3
09-Jun-2016 07:59:23 59 0.08 0.9
09-Jun-2016 08:49:10 62 0.01 2.7
09-Jun-2016 09:53:57 59 0.03 3.4

Select the last rows from each set of rows that have duplicate times. Specify the
"previous” method of retime to copy data from the last row. When you specify
"previous”, then retime starts at the end of the vector of row times and stops when it
encounters a duplicate row time. Then it copies the data from that row.

TT2 = retime(TT,uniqueTimes, "previous”)

TT2 = 5x3 timetable
Time Temp Rain WindSpeed

09-Jun-2016 05:03:11 66.2 0.05 3
09-Jun-2016 06:01:04 73 0.01 2.3
09-Jun-2016 07:59:23 59 0.08 0.9
09-Jun-2016 08:49:10 82 0.01 2.7
09-Jun-2016 09:53:57 67 0.03 3.4

Aggregate Data from All Rows with Duplicate Times

Aggregate data from rows that have duplicate row times. For example, you can calculate
the means of several measurements of the same quantity taken at the same time.

Calculate the mean temperature, rainfall, and wind speed for rows with duplicate row
times using the retime function.

TT = retime(TT,uniqueTimes, "mean”)
TT = 5x3 timetable
Time Temp Rain WindSpeed
09-Jun-2016 05:03:11 66.2 0.05 3
09-Jun-2016 06:01:04 73 0.01 2.3
09-Jun-2016 07:59:23 59 0.08 0.9
09-Jun-2016 08:49:10 71.75 0.01 2.7

10-31

10 Timetables

10-32

09-Jun-2016 09:53:57 63 0.03 3.4

Make Timetable Regular

Create a regular timetable using retime. Interpolate the data onto a regular hourly time
vector. To use linear interpolation, specify " linear”. Each row time in TT begins on the
hour, and there is a one-hour interval between consecutive row times.

TT = retime(TT, "hourly®,"linear®)
TT = 6x3 timetable
Time Temp Rain WindSpeed

09-Jun-2016 05:00:00 65.826 0.0522 3.0385
09-Jun-2016 06:00:00 72.875 0.010737 2.3129
09-Jun-2016 07:00:00 66.027 0.044867 1.6027
09-Jun-2016 08:00:00 59.158 0.079133 0.9223
09-Jun-2016 09:00:00 70.287 0.013344 2.8171
09-Jun-2016 10:00:00 62.183 0.031868 3.4654

Extract Regular Timetable Data

You can export the timetable data for use with functions to analyze data that is regularly
spaced in time. For example, the Econometrics Toolbox™ and the Signal Processing
Toolbox™ have functions you can use for further analysis on regularly spaced data.

Extract the timetable data as an array. You can use the Variables property to return
the data as an array when the table variables can be concatenated.

A = TT.Variables;
A(1:5,:)

ans =

65.8260 0.0522 3.0385
72.8747 0.0107 2.3129
66.0266 0.0449 1.6027
59.1579 0.0791 0.9223
70.2868 0.0133 2.8171

TT.Variables is equivalent to using curly braces to access all variables.

Clean Timetable with Missing, Duplicate, or Nonuniform Times

A2 = TT{:,:};

A2(1:5,:3)

ans =
65.8260 0.0522 3.0385
72.8747 0.0107 2.3129
66.0266 0.0449 1.6027
59.1579 0.0791 0.9223
70.2868 0.0133 2.8171

See Also

diff | fillmissing | isregular | issorted | retime | rmmissing | sortrows |
table2timetable | timetable | unique

Related Examples

. “Create Timetables” on page 10-2

. “Resample and Aggregate Data in Timetable” on page 10-6

. “Combine Timetables and Synchronize Their Data” on page 10-10

. “Select Timetable Data by Row Time and Variable Type” on page 10-17

10-33

] 0 Timetables

Using Row Labels in Table and Timetable Operations

10-34

Tables and timetables provide ways to label the rows in your data. In tables, you can
label the rows with names. In timetables, you must label the rows with dates, times, or
both. Row names are optional for tables, but row times are required for timetables. These
row labels are part of the metadata in a table or timetable. In some functions you also
can use row labels as key variables, grouping variables, and so on, just as you can use the
data variables in a table or timetable. These functions are sortrows, join, innerjoin,
outerjoin, varfun, rowfun, stack, and unstack. There are some limitations on using
these table functions and on using row labels as key variables.

Sort on Row Labels

For example, you can sort a timetable on its row times, on one or more of its data
variables, or on row times and data variables together.

Create a timetable using the timetable function. A timetable has row times along its
first dimension, labeling the rows. The row times are a property of the timetable, not a
timetable variable.

Date = datetime(2016,7,[10;10;11;11;10;10;11;11]);
X = [1;1;1;1;2;2;2;2];

Y = {*a":"b":"a": b :*a":"b":"a":"b"}:

Z = [1;2;3;4;5;6;7;8];

1;
TT = timetable(X,Y,Z,"RowTimes" ,Date)

TT = 8x3 timetable

Time X Y Z
10-Jul-2016 1 "a* 1
10-Jul-2016 1 "b* 2
11-Jul-2016 1 "a” 3
11-Jul-2016 1 "b* 4
10-Jul-2016 2 "a” 5
10-Jul-2016 2 "b* 6
11-Jul-2016 2 "a* 7
11-Jul-2016 2 "b* 8

Rename the first dimension. By default, the name of the first dimension of a timetable
is Time. You can access the Properties.DimensionNames property to rename a
dimension.

Using Row Labels in Table and Timetable Operations

TT.Properties.DimensionNames{1} = "Date”;
TT.Properties.DimensionNames

ans = 1x2 cell array
"Date” "Variables”

As an alternative, you can specify the row times as the first input argument to
timetable, without specifying "RowTimes". The timetable function names the
row times, or the first dimension, after the first input argument, just as it names the
timetable variables after the other input arguments.

TT = timetable(Date,X,Y,Z2)
TT = 8x3 timetable
Date X Y Z
10-Jul-2016 1 a® 1
10-Jul-2016 1 "b* 2
11-Jul-2016 1 a® 3
11-Jul-2016 1 "b* 4
10-Jul-2016 2 a® 5
10-Jul-2016 2 "b* 6
11-Jul-2016 2 a® 7
11-Jul-2016 2 "b* 8

Sort the timetable by row times. To sort on row times, refer to the first dimension of the
timetable by name.

sortrows(TT, "Date™)

ans = 8x3 timetable

Date X Y Z
10-Jul-2016 1 "a” 1
10-Jul-2016 1 b 2
10-Jul-2016 2 "a” 5
10-Jul-2016 2 b 6
11-Jul-2016 1 "a® 3
11-Jul-2016 1 b 4
11-Jul-2016 2 "a® 7
11-Jul-2016 2 b 8

10-35

10 Timetables

Sort by the data variables X and Y. sortrows sorts on X first, then on Y.
sortrows(TT,{"X" "Y"}D

ans = 8x3 timetable

Date X Y Z
10-Jul-2016 1 at 1
11-Jul-2016 1 "at 3
10-Jul-2016 1 "b*" 2
11-Jul-2016 1 "b*" 4
10-Jul-2016 2 "at 5
11-Jul-2016 2 at 7
10-Jul-2016 2 "b*" 6
11-Jul-2016 2 "b*" 8

Sort by row times and X together.
sortrows(TT,{"Date” "X"})

ans = 8x3 timetable

Date X Y Z
10-Jul-2016 1 "at 1
10-Jul-2016 1 b 2
10-Jul-2016 2 at 5
10-Jul-2016 2 b 6
11-Jul-2016 1 at 3
11-Jul-2016 1 b 4
11-Jul-2016 2 at 7
11-Jul-2016 2 b 8

Use Row Labels as Grouping or Key Variables

When you group rows together using the rowfun, varfun, stack, and unstack
functions, you can specify row labels as grouping variables. When you join tables or
timetable together using the join, innerjoin, and outerjoin functions, you can
specify row labels as key variables.

10-36

Using Row Labels in Table and Timetable Operations

For example, you can perform an inner join two tables together, using row names and a
table variable together as key variables. An inner join keeps only those table rows that
match with respect to the key variables.

Create two tables of patient data. A table can have row names along its first dimension,
labeling the rows, but is not required to have them. Specify the last names of patients as
the row names of the tables. Add the first names of the patients as table variables.

A = table({"Michael " ;"Louis”; "Alice";"Rosemary”;"Julie"},[38;43;45;40;49], - ..
"VariableNames” ,{"FirstName® "Age"},...
"RowNames*® ,{"Garcia®™ "Johnson® "Wu®" "Jones®™ "Picard"})

A = 5x2 table

FirstName Age
Garcia "Michael*® 38
Johnson "Louis” 43
Wu "Alice” 45
Jones "Rosemary* 40
Picard *Julie” 49

B = table({"Michael";"Beverly”;"Alice"}, ...
[64;69;67],---
[119;163;133],..-
[122 80; 109 77; 117 75],---
"VariableNames" ,{"FirstName® "Height" “Weight® "BloodPressure”}, ...
"RowNames*® ,{"Garcia® "Johnson® "Wu"})

B = 3x4 table
FirstName Height Weight BloodPressure

Garcia "Michael " 64 119 122 80
Johnson "Beverly* 69 163 109 77
Wu "Alice” 67 133 117 75

If a table has row names, then you can index into it by row name. Indexing by row names
is a convenient way to select rows of a table. Index into B by a patient's last name to
retrieve information about the patient.

B("Garcia“,:)

10-37

] 0 Timetables

10-38

ans = 1x4 table
FirstName Height Weight BloodPressure

Garcia "Michael ® 64 119 122 80

Perform an inner join on the two tables. Both tables use the last names of patients as row
names, and contain the first names as a table variable. Some patients in the two tables
have matching last names but different first names. To ensure that both last and first
names match, use the row names and FirstName as key variables. To specify the row
names as a key or grouping variable, use the name of the first dimension of the table. By
default, the name of the first dimension is "Row".

C

innerjoin(A,B, "Keys™ ,{"Row", "FirstName"})

C = 2x5 table
FirstName Age Height Weight BloodPressure

Garcia "Michael® 38 64 119 122 80
Wu "Alice” 45 67 133 117 75

If you rename the first dimension of a table, then you can refer to the row names by that
name instead of using "Row". Perform the same inner join as above but use a different
name to refer to the row names.

Show the dimension names of A by accessing its Properties.DimensionNames
property.

A_Properties.DimensionNames

ans = 1x2 cell array
"Row* "Variables*®

Change the name of the first dimension of the table by using its
Properties.DimensionNames property. Then use the new name as a key variable.

A_Properties.DimensionNames{1} = "LastName~;
A_Properties.DimensionNames

ans = 1x2 cell array

Using Row Labels in Table and Timetable Operations

"LastName* "Variables”

Perform an inner join on A and B using LastName and FirstName as key variables.

B_Properties.DimensionNames{1} = “LastName-®;
D = innerjoin(A,B, "Keys*®,{"LastName®, "FirstName"})

D = 2x5 table
FirstName Age Height Weight BloodPressure
Garcia "Michael* 38 64 119 122 80
Wu "Alice” 45 67 133 117 75

Notes on Use of Table Functions and Row Labels

* You cannot stack or unstack row labels using the stack and unstack functions.
However, you can use row labels as grouping variables.

* You cannot perform a join using the join, innerjoin, or outerjoin functions when
the first argument is a table and the second argument is a timetable. However, you
can perform a join when both arguments are tables, both are timetables, or the first
argument is a timetable and the second is a table.

* The output of a join operation can have row labels if you specify row labels as key
variables. For more details on row labels from a join operation, see the documentation
on the "Keys", "LeftKeys", and "RightKeys" arguments of the join, innerjoin,
and outerjoin functions.

See Also

innerjoin | join | outerjoin | rowfun | sortrows | stack | unstack | varfun

10-39

Structures

* “Create Structure Array” on page 11-2

* “Access Data in a Structure Array” on page 11-6

+ “Concatenate Structures” on page 11-10

* “Generate Field Names from Variables” on page 11-13

* “Access Data in Nested Structures” on page 11-14

+ “Access Elements of a Nonscalar Struct Array” on page 11-16
+ “Ways to Organize Data in Structure Arrays” on page 11-18

+ “Memory Requirements for a Structure Array” on page 11-22

]] Structures

Create Structure Array

This example shows how to create a structure array. A structure is a data type that
groups related data using data containers called fields. Each field can contain data of any
type or size.

Store a patient record in a scalar structure with fields name, billing, and test.

patient
—— _namme John Doe
— _billing —— 127.00
—— test —
79 75 T3
180 178 1775
220 210 205

patient(1l).name = "John Doe";

patient(1).billing = 127.00;

patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];
patient

patient = struct with fields:
name: "John Doe*"

billing: 127
test: [3x3 double]

Add records for other patients to the array by including subscripts after the array name.

11-2

Create Structure Array

patient array

patient(1) patient(2)
-name —— "John Doe' .-name —— "Ann Lane’
billing — 127.00 billing — 28.50
test 79 75 T3 test 68 70 68
180 178 177.5 118 118 119
220 210 205 172 170 169

patient(2).name = "Ann Lane";

patient(2).billing = 28.50;

patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];
patient

patient = 71x2 struct array with fields:
name
billing
test

Each patient record in the array is a structure of class struct. An array of structures is
often referred to as a struct array. Like other MATLAB arrays, a struct array can have
any dimensions.

A struct array has the following properties:

+ All structs in the array have the same number of fields.
+ All structs have the same field names.

+ Fields of the same name in different structs can contain different types or sizes of
data.

11-3

]] Structures

Any unspecified fields for new structs in the array contain empty arrays.

patient(3).name = "New Name®;
patient(3)

ans = struct with fields:
name: “New Name*®
billing: []
test: []

Access data in the structure array to find how much the first patient owes, and to create
a bar graph of his test results.

amount_due = patient(l).billing

amount_due 127

bar(patient(l).test)
title(["Test Results for °, patient(l).name])

11-4

Create Structure Array

Test Results for John Doe

250 T

Related Examples

. “Access Data in a Structure Array” on page 11-6
. “Create Cell Array” on page 12-3

. “Create and Work with Tables” on page 9-2

More About
. “Cell vs. Struct Arrays” on page 12-18
. “Advantages of Using Tables” on page 9-54

11-5

]] Structures

Access Data in a Structure Array

11-6

This example shows how to access the contents of a structure array. To run the code in
this example, load several variables into a scalar (1-by-1) structure named S.

S

load("clown.mat"®)

S

struct with fields:
X: [200%x320 double]
map: [81x3 double]
caption: [2x1 char]

The variables from the file (X, caption, and map) are now fields in the struct.

Access the data using dot notation of the form structName. fieldName. For example,
pass the numeric data in field X to the image function:

image(S.X)
colormap(S.map)

Access Data in a Structure Array

20

40

60

80

100

120

140

160

180

200

a0 100 150 200 280 300

To access part of a field, add indices as appropriate for the size and type of data in the
field. For example, pass the upper left corner of X to the image function:

upperLeft = S.X(1:50,1:80);
image(upperLeft);

11-7

]] Structures

If a particular field contains a cell array, use curly braces to access the data, such as
S.cellField{1:50,1:80}.

Data in Nonscalar Structure Arrays

Create a nonscalar array by loading data from the file mandrill _.mat into a second
element of array S:

S(2) = load("mandrill_mat™)

Each element of a structure array must have the same fields. Both clown.mat and
mandri Il .mat contain variables X, map, and caption.

Sis a 1-by-2 array.

11-8

Access Data in a Structure Array

S =
1x2 struct array with fields:

X
map
caption

For nonscalar structures, the syntax for accessing a particular field is
structName(indices) . fieldName. Redisplay the clown image, specifying the index
for the clown struct (1):

image(S(1)-X)
colormap(S(1) -map)

Add indices to select and redisplay the upper left corner of the field contents:

upperLeft = S(1).X(1:50,1:80);
image(upperLeft)

Note: You can index into part of a field only when you refer to a single element of a
structure array. MATLAB does not support statements such as S(1:2) .X(1:50,1:80),
which attempt to index into a field for multiple elements of the structure.

Related Examples
. “Access Data in Nested Structures” on page 11-14
. “Access Elements of a Nonscalar Struct Array” on page 11-16

. “Generate Field Names from Variables” on page 11-13

11-9

]] Structures

Concatenate Structures

This example shows how to concatenate structure arrays using the [] operator. To
concatenate structures, they must have the same set of fields, but the fields do not need
to contain the same sizes or types of data.

Create scalar (1-by-1) structure arrays structl and struct2, each with fields a and b:

structl.a = "first”";
structl.b = [1,2,3];
struct2.a = "second”;
struct2.b = rand(5);
structl,struct2
structl =

struct with fields:
a: "first”
b: [1 2 3]
struct2 =
struct with fields:
a: "second”

b: [5%5 double]

Just as concatenating two scalar values such as [1,2] creates a 1-by-2 numeric array,
concatenating structl and struct2 creates a 1-by-2 structure array.

combined = [structl,struct2]

combined
1x2 struct array with fields:

a
b

11-10

Concatenate Structures

When you want to access the contents of a particular field, specify the index of the
structure in the array. For example, access field a of the first structure.

combined(l).a

ans =

"first"

Concatenation also applies to nonscalar structure arrays. For example, create a 2-
by-2 structure array named new. Because the 1-by-2 structure combined and the 2-
by-2 structure new both have two columns, you can concatenate them vertically with a
semicolon separator.

new(l,1).a = 1;
new(1,1).b = 10;
new(1,2).a = 2;
new(1,2).b = 20;
new(2,1).a = 3;
new(2,1).b = 30;
new(2,2).a = 4;
new(2,2).b = 40;

larger = [combined; new]

larger =
3x2 struct array with fields:

a
b

Access field a of the structure larger(2,1). It contains the same value as new(1,1) .a.

larger(2,1).a

ans =

11-11

]] Structures

Related Examples

“Creating and Concatenating Matrices”

“Access Data in a Structure Array” on page 11-6

“Access Elements of a Nonscalar Struct Array” on page 11-16

11-12

Generate Field Names from Variables

Generate Field Names from Variables

This example shows how to derive a structure field name at run time from a variable or
expression. The general syntax is

structName . (dynamicExpression)

where dynamicExpression is a variable or expression that, when evaluated, returns
a character vector. Field names that you reference with expressions are called dynamic
field names.

For example, create a field name from the current date:

currentDate = datestr(now, "*mmmdd*®);
myStruct. (currentDate) = [1,2,3]

If the current date reported by your system is February 29, then this code assigns data to
a field named Feb29:

myStruct =
Feb29: [1 2 3]

Field names, like variable names, must begin with a letter, can contain letters, digits,
or underscore characters, and are case sensitive. To avoid potential conflicts, do not use
the names of existing variables or functions as field names. For more information, see
“Variable Names” on page 1-5.

11-13

]] Structures

Access Data in Nested Structures

11-14

This example shows how to index into a structure that is nested within another
structure. The general syntax for accessing data in a particular field is

structName(index) .nestedStructName(index) . FieldName(indices)

When a structure is scalar (1-by-1), you do not need to include the indices to refer to the
single element. For example, create a scalar structure S, where field n is a nested scalar
structure with fields a, b, and c:

s.n.a = ones(3);
s.n.b = eye(4);
s.n.c = magic(b);

Access the third row of field b:
third_row b = s.n.b(3,:)
Variable third_row_b contains the third row of eye(4).

third _row b =
0 0 1 0

Expand s so that both s and n are nonscalar (1-by-2):

s(1)-n(2).a = 2*ones(3);
s(1)-n(2).b = 2*eye(4);
s(1)-n(2).c = 2*magic(5);
s(2).n(1).a = "1a";
s(2).n(2).a = "2a";
s(2).n(1).b = "1b";
s(2).n(2).b = "2b";
s(2).n(1).c = "1c";
s(2).n(2).c = "2c";

Structure s now contains the data shown in the following figure.

Access Data in Nested Structures

s(1) , |
nl) —a—| 1 1 1 nR —a—| 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2
_ p—| 1 0 0 © . p—| 2 0 0 0
0O 1 0 0 0 2 0 O
0O 0O 1 0 0 0 2 0
0O 0 0 1 0 0 0 2
—C— 17 24 1 8 15 —.C— [34 48 2 16 30
23 5 7 14 16 46 10 14 28 32
4 6 13 20 22 8 12 26 40 44
10 12 19 21 3 20 24 38 42 [
11 18 25 2 9 22 36 50 4 18
.n(1) a—| 1la .n2)—.a—| 2a
—b— | 1p b—| 2p
.C — lc .C — 2C

Access part of the array in field b of the second element in n within the first element of s:
part_two_eye = s(1).n(2).b(1:2,1:2)

This returns the 2-by-2 upper left corner of 2*eye(4):

part_two_eye =

2 0
0 2

11-15

]] Structures

Access Elements of a Nonscalar Struct Array

11-16

This example shows how to access and process data from multiple elements of a
nonscalar structure array:

Create a 1-by-3 structure s with field T:

s().f = 1;
s(2).f = "two";
s(3).F = 3 * ones(3);

Although each structure in the array must have the same number of fields and the same
field names, the contents of the fields can be different types and sizes. When you refer to
field F for multiple elements of the structure array, such as

s(1:3).f
or

s.f

MATLAB returns the data from the elements in a comma-separated list, which displays
as follows:

ans =
1

ans =
two

ans =
3 3 3
3 3 3
3 3 3

You cannot assign the list to a single variable with the syntax v = s.f because the
fields can contain different types of data. However, you can assign the list items to the
same number of variables, such as

[vi, v2, v3] = s.f;
or assign to elements of a cell array, such as

c = {s.f};

Access Elements of a Nonscalar Struct Array

If all of the fields contain the same type of data and can form a hyperrectangle, you can
concatenate the list items. For example, create a structure nums with scalar numeric
values in field F, and concatenate the data from the fields:

nums(1).f = 1;
nums(2).f = 2;
nums(3).f = 3;

allNums = [nums.f]

This code returns

alINums =
1 2 3

If you want to process each element of an array with the same operation, use the
arrayfun function. For example, count the number of elements in field F of each struct
in array S:

numElements = arrayfun(@(x) numel(x.f), s)

The syntax @(X) creates an anonymous function. This code calls the numel function for
each element of array s, such as numel (s(1) -T), and returns

numElements =
1 3 9

For related information, see:

+ “Comma-Separated Lists” on page 2-74

+ “Anonymous Functions” on page 20-24

11-17

]] Structures

Ways to Organize Data in Structure Arrays

11-18

There are at least two ways you can organize data in a structure array: plane
organization and element-by-element organization. The method that best fits your data
depends on how you plan to access the data, and, for very large data sets, whether you
have system memory constraints.

Plane organization allows easier access to all values within a field. Element-by-element
organization allows easier access to all information related to a single element or record.
The following sections include an example of each type of organization:

+ “Plane Organization” on page 11-18

+ “Element-by-Element Organization” on page 11-20

When you create a structure array, MATLAB stores information about each element and
field in the array header. As a result, structures with more elements and fields require
more memory than simpler structures that contain the same data. For more information

on memory requirements for arrays, see “How MATLAB Allocates Memory” on page
29-12.

Plane Organization

Consider an RGB image with three arrays corresponding to color intensity values.

Ways to Organize Data in Structure Arrays

. [o.sBo 0.708 0. 118 0.8E4 . .
Bl intensity | 5 sss o 532 0,853 0 225 ...
vales 0.314 0.265 0.159 0.101
0.553 0.533 0.528 0.493 . ..
0.441 0.465 0.512 0.512 . ..
0.398 0.401 0.421 0.398 . ..
. |o.342 0.547 0.515 0.816 12 0.73 ...
Greenintensty | o 411 o.300 0.205 0,528 19 0.328 . ..
values 0.523 0.428 0.712 0.929 128 0.133 ...
0.214 0.504 0.918 0.344
0.100 0.121 0.113 0.1286
0.288 0.187 0.204 0.175
. 0.112 0.986 0.234 0,432 50 0.5
Red intensity | 5 765 0. 128 0 883 0,521 poT 0.910
vales 1.000 0.985 0.761 0.598 pes 0.726
0.455 0.783 0.224 0,395
0.021 0.500 0.311 0.123
1.000 1.000 O.B6T 0.051
1.000 0.945 0.998 0. 893
0.990 0.941 1.000 0.676
0.902 0.857 0.834 0.798

If you have arrays RED, GREEN, and BLUE in your workspace, then these commands
create a scalar structure named img that uses plane organization:

img.red = RED;
img.green = GREEN;
img.-blue = BLUE;

Plane organization allows you to easily extract entire image planes for display, filtering,
or other processing. For example, multiply the red intensity values by 0.9:

adjustedRed = .9 * img.red;
If you have multiple images, you can add them to the Img structure, so that each element

img(l), - - ., img(n) contains an entire image. For an example that adds elements to a
structure, see the following section.

11-19

]] Structures

11-20

Element-by-Element Organization

Consider a database with patient information. Each record contains data for the patient’s
name, test results, and billing amount.

patient array

patient(1) patient(2)
name —— "John Doe’ name —— "Ann Lane'
Ebilling — 127.00 Ebilling — 2850
st 79 75 73 test 68 70 68
180 178 1774 118 118 119
220 210 205 172 170 169

These statements create an element in a structure array named patient:
patient(l).name = "John Doe";
patient(1).billing = 127.00;
patient(l).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

Additional patients correspond to new elements in the structure. For example, add an
element for a second patient:

patient(2).name = "Ann Lane”;
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

Element-by-element organization supports simple indexing to access data for a particular
patient. For example, find the average of the first patient’s test results, calculating by
rows (dimension 2) rather than by columns:

aveResultsDoe = mean(patient(l).test,2)
This code returns

aveResultsDoe =

Ways to Organize Data in Structure Arrays

75.6667
178.5000
212 .0000

For information on processing data from more than one element at a time, see “Access
Data in a Structure Array” on page 11-6.

11-21

]] Structures

Memory Requirements for a Structure Array

11-22

Structure arrays do not require completely contiguous memory. However, each field
requires contiguous memory, as does the header that MATLAB creates to describe the
array. For very large arrays, incrementally increasing the number of fields or the number
of elements in a field results in Out of Memory errors.

Allocate memory for the contents by assigning initial values with the struct function,
such as

newStruct(1:25,1:50) = struct("a“,ones(20),"b",zeros(30), "c",rand(40));
This code creates and populates a 25-by-50 structure array S with fields a, b, and c.

If you prefer not to assign initial values, you can initialize a structure array by assigning
empty arrays to each field of the last element in the structure array, such as

newStruct(25,50).a = [];
newStruct(25,50).b = [];
newStruct(25,50).c = [1;

or, equivalently,
newStruct(25,50) = struct(a“,[1,"b",[,"c",[D):

However, in this case, MATLAB only allocates memory for the header, and not for the
contents of the array.

For more information, see:

* “Preallocating Memory”
+ “How MATLAB Allocates Memory” on page 29-12

Cell Arrays

* “What Is a Cell Array?” on page 12-2

+ “Create Cell Array” on page 12-3

* “Access Data in Cell Array” on page 12-5

+ “Add Cells to Cell Array” on page 12-8

+ “Delete Data from Cell Array” on page 12-10

* “Combine Cell Arrays” on page 12-11

+ “Pass Contents of Cell Arrays to Functions” on page 12-12

+ “Preallocate Memory for Cell Array” on page 12-17

+ “Cell vs. Struct Arrays” on page 12-18

* “Multilevel Indexing to Access Parts of Cells” on page 12-24

12 cel Arrays

What Is a Cell Array?

12-2

A cell array is a data type with indexed data containers called cells. Each cell can contain
any type of data. Cell arrays commonly contain pieces of text, combinations of text and
numbers from spreadsheets or text files, or numeric arrays of different sizes.

There are two ways to refer to the elements of a cell array. Enclose indices in smooth

parentheses, (), to refer to sets of cells — for example, to define a subset of the array.
Enclose indices in curly braces, {}, to refer to the text, numbers, or other data within
individual cells.

For more information, see:

+ “Create Cell Array” on page 12-3
* “Access Data in Cell Array” on page 12-5

Create Cell Array

Create Cell Array

This example shows how to create a cell array using the {} operator or the cell
function.

When you have data to put into a cell array, create the array using the cell array
construction operator, {}.

myCell = {1, 2, 3;
"text", rand(5,10,2), {11; 22; 33}}

myCell = 2x3 cell array

[11 L 2] L 3]
"text” [5%10%2 double] {3x1 cell}

Like all MATLAB® arrays, cell arrays are rectangular, with the same number of cells in
each row. myCell is a 2-by-3 cell array.

You also can use the {} operator to create an empty 0-by-0 cell array.
c=4{
C =

0x0 empty cell array

To add values to a cell array over time or in a loop, create an empty N-dimensional array
using the cell function.

emptyCell = cell(3,4,2)
emptyCell = 3x4x2 cell array
(:.:,1) =

1 1 1 1

L1 L1 L1 L1
1 L1 L1 [1

(:,:,2)
1 1 1 1

12-3

12 cel Arrays

L1 L1 L1 [l
1 L1 L1 [l

emptyCell is a 3-by-4-by-2 cell array, where each cell contains an empty array, [].

See Also

cell

Related Examples

. “Access Data in Cell Array” on page 12-5
. “Multidimensional Cell Arrays”

. “Create Structure Array” on page 11-2

. “Create and Work with Tables” on page 9-2

More About

. “Cell vs. Struct Arrays” on page 12-18
. “Advantages of Using Tables” on page 9-54

12-4

Access Data in Cell Array

Access Data in Cell Array

This example shows shows how to read and write data to and from a cell array.

Create a 2-by-3 cell array of text and numeric data.

C = {"one”, "two", "three";
1, 2, 3}

(@]
1

2x3 cell array
"one" "two" "three*

[1] [2] L 3]

There are two ways to refer to the elements of a cell array. Enclose indices in smooth
parentheses, (), to refer to sets of cells--for example, to define a subset of the array.
Enclose indices in curly braces, {}, to refer to the text, numbers, or other data within
individual cells.

Cell Indexing with Smooth Parentheses, ()

Cell array indices in smooth parentheses refer to sets of cells. For example, to create a 2-
by-2 cell array that is a subset of C, use smooth parentheses.

upperLeft = C(1:2,1:2)

upperLeft = 2x2 cell array
"one* "two*

L 1] [2]

Update sets of cells by replacing them with the same number of cells. For example,
replace cells in the first row of C with an equivalent-sized (1-by-3) cell array.

C(1,1:3) = {*first","second”, "third"}

C = 2x3 cell array
"First" "second” “third"

L 1] L 2] L 3]

If cells in your array contain numeric data, you can convert the cells to a numeric array
using the cel I12mat function.

numericCells = C(2,1:3)

12-5

12 cel Arrays

12-6

numericCells = 71x3 cell array

[11 [2] [3]

numericVector = cell2mat(numericCells)

numericVector

1 2 3

numericCellsis a 1-by-3 cell array, but numericVector is a 1-by-3 array of type
double.

Content Indexing with Curly Braces, {}

Access the contents of cells--the numbers, text, or other data within the cells--by indexing
with curly braces. For example, to access the contents of the last cell of C, use curly
braces.

last = C{2,3}

3

last
last is a numeric variable of type double, because the cell contains a double value.

Similarly, you can index with curly braces to replace the contents of a cell.
c{2,3} = 300

C = 2x3 cell array
"first" "second” “third"

L 1] L 2] [300]

You can access the contents of multiple cells by indexing with curly braces. MATLAB®
returns the contents of the cells as a comma-separated list. Because each cell can contain
a different type of data, you cannot assign this list to a single variable. However, you
can assign the list to the same number of variables as cells. MATLAB® assigns to the
variables in column order.

Assign contents of four cells of C to four variables.

[ricl, r2cl, ric2, r2c2] = C{1:2,1:2}

Access Data in Cell Array

ricl =
"first”
r2cl =1
rlc2 =
"second”
r2c2 = 2

If each cell contains the same type of data, you can create a single variable by applying
the array concatenation operator, [], to the comma-separated list.

Concatenate the contents of the second row into a numeric array.
nums = [C{2,:}]

nums =

1 2 300

See Also

cell | cell2mat

Related Examples

. “Create Cell Array” on page 12-3

. “Multidimensional Cell Arrays”

. “Multilevel Indexing to Access Parts of Cells” on page 12-24
. “Comma-Separated Lists” on page 2-74

12-7

12 cel Arrays

Add Cells to Cell Array

This example shows how to add cells to a cell array.

Create a 1-by-3 cell array.

C

{1, 2, 3}

C

1x3 cell array

[11 [2] [31

Assign data to a cell outside the current dimensions. MATLAB® expands the cell array
to a rectangle that includes the specified subscripts. Any intervening cells contain empty

arrays.

C{4.,4%} = 44

C = 4x4 cell array
[11 [2] [31 L1
L1 L1 L1 L1
L1 L1 L1 [1

[1 [1 [1 [44]

Add cells without specifying a value by assigning an empty array as the contents of a cell.
C is now a 5-by-5 cell array.

c{5.5} = [1

C = 5x5 cell array
[1] [2] 3] [1 1
1 1 1 [1 1
1 1 1 1 1
1 1 1 [44] 1
1 1 1 1 1

Related Examples
“Access Data in Cell Array” on page 12-5
“Combine Cell Arrays” on page 12-11

12-8

Add Cells to Cell Array

“Delete Data from Cell Array” on page 12-10

12-9

12 cel Arrays

Delete Data from Cell Array

This example shows how to remove data from individual cells, and how to delete entire
cells from a cell array.

Create a 3-by-3 cell array
c=4{1, 2, 3; 4,5, 6; 7, 8, 9}

C = 3x3 cell array
[1] [2] [3]
[4] [5] [6]
[7] 8] [°]

Delete the contents of a particular cell by assigning an empty array to the cell, using
curly braces for content indexing, {}.

¢{2.2y = 1

C = 38x3 cell array
[1] [2] [3]
[4] [l 6]
71 8l el

Delete sets of cells using standard array indexing with smooth parentheses, (). For
example, remove the second row of C.

¢, =01

C = 2x3 cell array
[1] [2] [3]
71 8l el

Related Examples
“Add Cells to Cell Array” on page 12-8
“Access Data in Cell Array” on page 12-5

12-10

Combine Cell Arrays

Combine Cell Arrays

This example shows how to combine cell arrays by concatenation or nesting. To run the
code in this example, create several cell arrays with the same number of columns:

C1 = {1, 2, 3};
C2 = {IAI, IBI, 'CI};
C3 = {10, 20, 303};

Concatenate cell arrays with the array concatenation operator, []. In this example,
vertically concatenate the cell arrays by separating them with semicolons:

C4 = [C1; C2; C3]
C4 is a 3-by-3 cell array:
C4 =
[11 [2] L 31
A~ 5" c-
[10] [20] [30]
Create a nested cell array with the cell array construction operator, {}:
c5 = {C1; C2; C3}
C5 is a 3-by-1 cell array, where each cell contains a cell array:
C5 =
{1x3 cell}

{1x3 cell}
{1x3 cell}

To combine cell arrays of character vectors into one character vector, use the strjoin
function.

See Also

strjoin

Related Examples

. “Concatenating Matrices”

12-11

12 cel Arrays

Pass Contents of Cell Arrays to Functions

These examples show several ways to pass data from a cell array to a MATLAB®
function that does not recognize cell arrays as inputs.

Pass the contents of a single cell by indexing with curly braces, {}.

This example creates a cell array that contains text and a 20-by-2 array of random
numbers.

randCell = {"Random Data®, rand(20,2)};

plot(randCell{1,2})
title(randCell{1,1})

Random Data

[T
[

0.8

0.7 r

04r1

0.3

12-12

Pass Contents of Cell Arrays to Functions

Plot only the first column of data by indexing further into the content (multilevel
indexing).

figure
plot(randCel1{1,2}(:,1))
title("First Column of Data®)

First Column of Data
1 :

A IIF_—|| Ilrhqq1II

0.9 /l \ |'II || | .II }/

ost ~ || \ []

07r | |
ool | | || f || f II [f
0.5 |\ \ | | |

0.4 [|| \ | | |
0.3t || \ '

| |
0.2 F \ \ |

10 12 14 16 18 20

Combine numeric data from multiple cells using the ce 1 12mat function.

This example creates a 5-by-2 cell array that stores temperature data for three cities, and
plots the temperatures for each city by date.

temperature(l1,:) = {"01-Jan-2010",

[45, 49, 01}:
temperature(2,:) = {"03-Apr-2010-,

[54, 68, 21]}:

12-13

12 cel Arrays

temperature(3,
temperature(4,
temperature(5,)

20-Jun-2010", [72, 85, 53]};
15-Sep-2010", [63, 81, 56]1};
{"31-Dec-2010", [38, 54, 18]}:

D=4
D=4

allTemps = cell2mat(temperature(:,2));
dates = datenum(temperature(:,1), “dd-mmm-yyyy®);

plot(dates, allTemps)
datetick("x","mmm®)

a0 T T T T T T T T T T T

BD i -~ - : h .\\ -,]

.-"-'
& . o
70 F / ™,]
- '--._____ T
_,-"'Hf ---"'-\. . "'-,
60 pd .
-' = S

50 - } o -
40 .
30 r 7
207]

107 7

D i i i i i i i i i i i
Jan Feb Mar Apr May Jun Jul Aug Sep Oct MNov Dec Jan

Pass the contents of multiple cells as a comma-separated list to functions that accept multiple
inputs.

This example plots X against Y , and applies line styles from a 2-by-3 cell array C.

12-14

Pass Contents of Cell Arrays to Functions

X
Y

-pi:pi/10:pi;

C(:,1) = {"LineWidth"; 2};

tan(sin(X)) - sin(tan(X));

C(:,2) = {"MarkerEdgeColor®; "k"};
C(:,3) = {"MarkerFaceColor®; "g"};
plot(X, Y, "—--rs", C{:})
3 T T T T T T T
R
'y
2r 1y R
I h:f %
-] h‘
L I
1 ; 2
’ n
I A1
0 Q go0000® b
A I
o 1
% I
Ar 3 '
ﬂ‘ o Q
L AT
2r g /!
W
o
_3 i i i i i i i
-4 -3 -2 -1 1] 1 2 3
More About

. “Access Data in Cell Array” on page 12-5

. “Multilevel Indexing to Access Parts of Cells” on page 12-24

12-15

12 cel Arrays

. “Comma-Separated Lists” on page 2-74

12-16

Preallocate Memory for Cell Array

Preallocate Memory for Cell Array

This example shows how to initialize and allocate memory for a cell array.

Cell arrays do not require completely contiguous memory. However, each cell requires
contiguous memory, as does the cell array header that MATLAB creates to describe the
array. For very large arrays, incrementally increasing the number of cells or the number
of elements in a cell results in Out oF Memory errors.

Initialize a cell array by calling the cel I function, or by assigning to the last element.
For example, these statements are equivalent:

C = cell(25,50);
C{25,50} = [1;

MATLAB creates the header for a 25-by-50 cell array. However, MATLAB does not
allocate any memory for the contents of each cell.

See Also

cell

Related Examples
. “Preallocating Memory”
. “How MATLAB Allocates Memory” on page 29-12

12-17

12 cel Arrays

Cell vs. Struct Arrays

12-18

This example compares cell and structure arrays, and shows how to store data in each
type of array. Both cell and structure arrays allow you to store data of different types and
sizes.

Structure Arrays
Structure arrays contain data in fields that you access by name.

For example, store patient records in a structure array.

patient(1l).name = "John Doe~;
patient(1).billing = 127.00;
patient(l).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

patient(2).name = "Ann Lane”;
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

patient

patient = 71x2 struct array with fields:
name
billing
test

Create a bar graph of the test results for each patient.

numPatients = numel(patient);
for p = 1l:numPatients
figure
bar(patient(p).-test)
title(patient(p).name)
xlabel ("Test")
ylabel ("Result™)
end

Cell vs. Struct Arrays

250

150

Result

100

John Doe

Test

12-19

12 cel Arrays

Result

12-20

Ann Lane

180 T

160

140

120

100

60

201

Test

Cell Arrays

Cell arrays contain data in cells that you access by numeric indexing. Common
applications of cell arrays include storing separate pieces of text and storing
heterogeneous data from spreadsheets.

For example, store temperature data for three cities over time in a cell array.

temperature(l,:) {"2009-12-31", [45, 49, 01};

temperature(2,:) = {"2010-04-03", [54, 68, 21]1};
temperature(3,:) = {"2010-06-20", [72, 85, 531};
temperature(4,:) = {"2010-09-15", [63, 81, 561};
temperature(5,:) = {"2010-12-09", [38, 54, 18]};

Cell vs. Struct Arrays

temperature

temperature = 5x2 cell array
"2009-12-31" [1x3 double]
"2010-04-03" [1x3 double]
"2010-06-20" [1x3 double]
"2010-09-15" [1x3 double]
"2010-12-09" [1x3 double]

Plot the temperatures for each city by date.

allTemps = cell2mat(temperature(:,2));
dates = datetime(temperature(:,1));

plot(dates,allTemps)

title("Temperature Trends for Different Locations™)
xlabel ("Date")

ylabel ("Degrees (Fahrenheit)")

12-21

12 cel Arrays

12-22

= =} ©Q
]] ==
T T
e
i

[y
=
T

= on
o= [
T T
/ o
v
1 i

Degrees (Fahrenheit)
el
=

[

o
T
1

=&

=
T
i

D i i i

Temperature Trends for Different Locations

Jan 2010 Apr 2010 Jul 2010 Oct 2010 Jan 2011
Date

Other Container Arrays

Struct and cell arrays are the most commonly used containers for storing heterogeneous
data. Tables are convenient for storing heterogeneous column-oriented or tabular data.
Alternatively, use map containers, or create your own class.

See Also

cell | cell2mat | containers.Map | datetime | plot | struct | table

Related Examples
. “Access Data in Cell Array” on page 12-5

Cell vs. Struct Arrays

. “Access Data in a Structure Array” on page 11-6

. “Access Data in a Table” on page 9-33

More About
. “Advantages of Using Tables” on page 9-54

12-23

12 cel Arrays

Multilevel Indexing to Access Parts of Cells

12-24

This example shows techniques for accessing data in arrays stored within cells of cell
arrays.

Create a sample cell array.

myNum = [1, 2, 3];

myCell = {"one”, "two"};
myStruct.Fieldl ones(3);
myStruct.Field2 5*ones(5);

C = {myNum, 100*myNum;
myCell, myStruct}
C = 2x2 cell array

[1x3 double] [1x3 double]
{1x2 cell } [1x1 struct]

Access the complete contents of a particular cell using curly braces, {}. For example,
return a numeric vector from the cell that contains it.

c{1,2}
ans =

100 200 300

Access part of the contents of a cell by appending indices, using syntax that matches the
data type of the contents.

Enclose numeric indices in smooth parentheses. For example, C{1,1} returns the 1-
by-3 numeric vector, [1 2 3]. Access the second element of that vector using smooth
parentheses.

{1,1}(1.2)
ans = 2

Enclose cell array indices in curly braces. For example, C{2,1} returns the cell array,
{"one", "two"}. Access the contents of the second cell within that cell array using curly
braces.

Multilevel Indexing to Access Parts of Cells

C{2,1H1.2}
ans =

“two*

Refer to fields of a struct array with dot notation, and index into the array as described
for numeric and cell arrays. For example, C{2,2} returns a structure array, where
Field2 contains a 5-by-5 numeric array of fives. Access the element in the fifth row and
first column of that field using dot notation and smooth parentheses.

c{2,2}.Field2(5,1)

ans = 5

You can nest any number of cell and structure arrays. For example, add nested cells and
structures to C.

C{2,1+{2,2}

= {pi, eps};
c{2.2}.Field3 =

struct("NestedFieldl”, rand(3),
"NestedField2", magic(4), -
"NestedField3", {{"text"; "more text"}});

Access parts of the new data using curly braces, smooth parentheses, or dot notation.
copy_pi = C{2,1}{2,2}{1,1}
copy_pi = 3.1416

part_magic = C{2,2}.Field3.NestedField2(1:2,1:2)

part_magic

16 2
5 11

nested_cell C{2,2}.Field3.NestedField3{2,1}

nested_cell
"more text®

Related Examples
. “Access Data in Cell Array” on page 12-5

12-25

Function Handles

“Create Function Handle” on page 13-2
“Pass Function to Another Function” on page 13-6
“Call Local Functions Using Function Handles” on page 13-8

“Compare Function Handles” on page 13-10

]3 Function Handles

Create Function Handle

In this section...

“What Is a Function Handle?” on page 13-2
“Creating Function Handles” on page 13-2
“Anonymous Functions” on page 13-4
“Arrays of Function Handles” on page 13-4

“Saving and Loading Function Handles” on page 13-5

You can create function handles to named and anonymous functions. You can store
multiple function handles in an array, and save and load them, as you would any other
variable.

What Is a Function Handle?

A function handle is a MATLAB data type that stores an association to a function.
Indirectly calling a function enables you to invoke the function regardless of where you
call it from. Typical uses of function handles include:

* Pass a function to another function (often called function functions). For example,
passing a function to integration and optimization functions, such as integral and
fzero.

+ Specify callback functions. For example, a callback that responds to a Ul event or
interacts with data acquisition hardware.

* Construct handles to functions defined inline instead of stored in a program file
(anonymous functions).

+ (Call local functions from outside the main function.

You can see if a variable, h, is a function handle using isa(h, "function_handle™).

Creating Function Handles

To create a handle for a function, precede the function name with an @ sign. For example,
if you have a function called myfunction, create a handle named f as follows:

f = @myfunction;

13-2

Create Function Handle

You call a function using a handle the same way you call the function directly. For
example, suppose that you have a function named computeSquare, defined as:

function y = computeSquare(x)

y = X."2;
end

Create a handle and call the function to compute the square of four.

f = @computeSquare;
a=4;
b = f(a)
b =
16

If the function does not require any inputs, then you can call the function with empty
parentheses, such as

h = @ones;
a = hQ
a =

1

Without the parentheses, the assignment creates another function handle.
a=nh
a =

@ones

Function handles are variables that you can pass to other functions. For example,
calculate the integral of x* on the range [0,1].

q = integral(f,0,1);

Function handles store their absolute path, so when you have a valid handle, you can
invoke the function from any location. You do not have to specify the path to the function
when creating the handle, only the function name.

Keep the following in mind when creating handles to functions:

13-3

]3 Function Handles

13-4

+ Name length — Each part of the function name (including package and class names)
must be less than the number specified by name lengthmax. Otherwise, MATLAB
truncates the latter part of the name.

* Scope — The function must be in scope at the time you create the handle. Therefore,
the function must be on the MATLAB path or in the current folder. Or, for handles to
local or nested functions, the function must be in the current file.

* Precedence — When there are multiple functions with the same name, MATLAB uses
the same precedence rules to define function handles as it does to call functions. For
more information, see “Function Precedence Order” on page 20-43.

* Overloading — If the function you specify overloads a function in a class that is not a
fundamental MATLAB class, the function is not associated with the function handle
at the time it is constructed. Instead, MATLAB considers the input arguments and
determines which implementation to call at the time of evaluation.

Anonymous Functions

You can create handles to anonymous functions. An anonymous function is a one-
line expression-based MATLAB function that does not require a program file.
Construct a handle to an anonymous function by defining the body of the function,
anonymous_function, and a comma-separated list of input arguments to the
anonymous function, arglist. The syntax is:

h = @(arglist)anonymous_function

For example, create a handle, sgr, to an anonymous function that computes the square
of a number, and call the anonymous function using its handle.

sgr = @(n) n."2;
x = sqr(3)

X =
9

For more information, see “Anonymous Functions” on page 20-24.

Arrays of Function Handles

You can create an array of function handles by collecting them into a cell or structure
array. For example, use a cell array:

Create Function Handle

C = {@sin, @cos, @tan};
C{2}(pi1)

ans =
-1
Or use a structure array:

S.a = @sin; S.b = @cos; S.c = @tan;
S.a(pi/2)

ans =

Saving and Loading Function Handles

You can save and load function handles in MATLAB, as you would any other variable. In
other words, use the save and load functions. If you save a function handle, MATLAB
does not save the path information. If you load a function handle, and the function file
no longer exists on the path, the handle is invalid. An invalid handle occurs if the file
location or file name has changed since you created the handle. If a handle is invalid,
MATLAB might display a warning when you load the file. When you invoke an invalid
handle, MATLAB issues an error.

See Also

func2str | functions | i1sa | str2func

Related Examples

. “Pass Function to Another Function” on page 13-6
More About
. “Anonymous Functions” on page 20-24

13-5

]3 Function Handles

Pass Function to Another Function

13-6

You can use function handles as input arguments to other functions, which are called
function functions . These functions evaluate mathematical expressions over a range of
values. Typical function functions include integral, quad2d, fzero, and fminbnd.

For example, to find the integral of the natural log from 0 through 5, pass a handle to the
log function to integral.

a 0;
b 5;
gl = integral(@log,a,b)

gl = 3.0472

Similarly, to find the integral of the sin function and the exp function, pass handles to
those functions to integral.

g2 = integral(@sin,a,b)
g2 = 0.7163
g3 = integral(@exp,a,b)

q3 = 147.4132

Also, you can pass a handle to an anonymous function to function functions. An
anonymous function is a one-line expression-based MATLAB® function that does not

TPE SR
require a program file. For example, evaluate the integral of </ ' 1

[0, Inf]:

fun = 00OXx.-/7(exp(x)-1);
g4 = integral(fun,0,Inf)

on the range

g4 = 1.6449

Functions that take a function as an input (called function functions) expect that the
function associated with the function handle has a certain number of input variables. For
example, if you call integral or fzero, the function associated with the function handle
must have exactly one input variable. If you call integral3, the function associated
with the function handle must have three input variables. For information on calling
function functions with more variables, see “Parameterizing Functions”.

Pass Function to Another Function

Related Examples
. “Create Function Handle” on page 13-2

. “Parameterizing Functions”
More About
. “Anonymous Functions” on page 20-24

13-7

]3 Function Handles

Call Local Functions Using Function Handles

13-8

This example shows how to create handles to local functions. If a function returns
handles to local functions, you can call the local functions outside of the main function.
This approach allows you to have multiple, callable functions in a single file.

Create the following function in a file, el lipseVals.m, in your working folder. The
function returns a struct with handles to the local functions.

% Copyright 2015 The MathWorks, Inc.

function fh = ellipseVals

fh.focus = @computeFocus;
fh._eccentricity = @computeEccentricity;
fh_area = @computeArea;

end

function ¥ = computeFocus(a,b)
f = sqrt(an2-b"2);
end

function e = computeEccentricity(a,b)
f = computeFocus(a,b);

e = f/a;

end

function ae = computeArea(a,b)

ae = pi*a*b;

end

Invoke the function to get a struct of handles to the local functions.

h

ellipsevals

h =
struct with fields:

focus: @computeFocus
eccentricity: @computeEccentricity

Call Local Functions Using Function Handles

area: @computeArea

Call a local function using its handle to compute the area of an ellipse.

h.area(3,1)

ans =

9.4248

Alternatively, you can use the localfunctions function to create a cell array of
function handles from all local functions automatically. This approach is convenient if
you expect to add, remove, or modify names of the local functions.

See Also

localfunctions

Related Examples
. “Create Function Handle” on page 13-2

More About

. “Local Functions” on page 20-30

13-9

]3 Function Handles

Compare Function Handles

13-10

Compare Handles Constructed from Named Function

MATLAB® considers function handles that you construct from the same named function

to be equal. The isequal function returns a value of true when comparing these types of
handles.

funl = @sin;
fun2 = @sin;
isequal (funl,fun2)

ans =
logical

1

If you save these handles to a MAT-file, and then load them back into the workspace,
they are still equal.

Compare Handles to Anonymous Functions

Unlike handles to named functions, function handles that represent the same anonymous
function are not equal. They are considered unequal because MATLAB cannot guarantee
that the frozen values of nonargument variables are the same. For example, in this case,
A is a nonargument variable.

A =5;

hl @C)A * x."2;
h2 @C)A * x."2;
isequal(hl,h2)

ans =
logical

0

If you make a copy of an anonymous function handle, the copy and the original are equal.

Compare Function Handles

= OO)A * x.N2;
= hil;
equal (hl,h2)

hi
h2
is
ans =

logical

1

Compare Handles to Nested Functions

MATLAB considers function handles to the same nested function to be equal only if your
code constructs these handles on the same call to the function containing the nested
function. This function constructs two handles to the same nested function.

function [h1,h2] = test_eq(a,b,c)

hl = @findZ;

h2 = @findZ;
function z = findZ
zZ=a."3+ b."2+c";
end

end

Function handles constructed from the same nested function and on the same call to the
parent function are considered equal.

[h1,h2] = test_eq(4,19,-7);
isequal(hl,h2)

ans =
logical

1

Function handles constructed from different calls are not considered equal.

[al,g2] = test_eq(4,19,-7);

13-11

]3 Function Handles

isequal(hl,ql)

ans =
logical

0

See Also

isequal

Related Examples
. “Create Function Handle” on page 13-2

13-12

Map Containers

* “Overview of Map Data Structure” on page 14-2

* “Description of Map Class” on page 14-4

+ “Create Map Object” on page 14-6

+ “Examine Contents of Map” on page 14-9

+ “Read and Write Using Key Index” on page 14-11
+ “Modify Keys and Values in Map” on page 14-16
+ “Map to Different Value Types” on page 14-19

14 Map Containers

Overview of Map Data Structure

14-2

A Map is a type of fast key lookup data structure that offers a flexible means of indexing
into its individual elements. Unlike most array data structures in the MATLAB software
that only allow access to the elements by means of integer indices, the indices for a Map
can be nearly any scalar numeric value or a character vector.

Indices into the elements of a Map are called keys. These keys, along with the data values
associated with them, are stored within the Map. Each entry of a Map contains exactly
one unique key and its corresponding value. Indexing into the Map of rainfall statistics
shown below with a character vector representing the month of August yields the value
internally associated with that month, 37.3.

KEYS VALUES
Jan 327.2
Feb 368.2
Mar 197.6
Apr 178.4
May 100.0
Jun 69.9
Jul 32.3

Aug —— | Aug 37.3 — » 373
Sep 19.0
Oct 37.0
Nov 73.2
Dec 110.9
Annual 1551.0

Mean monthly rainfall statistics (mm)

Keys are not restricted to integers as they are with other arrays. Specifically, a key may
be any of the following types:

* 1-by-N character array

* Scalar real double or single

+ Signed or unsigned scalar integer

Overview of Map Data Structure

The values stored in a Map can be of any type. This includes arrays of numeric values,
structures, cells, character arrays, objects, or other Maps.

Note: A Map is most memory efficient when the data stored in it is a scalar number or a
character array.

See Also

containers.Map | keys | values

Related Examples

. “Description of Map Class” on page 14-4
. “Create Map Object” on page 14-6

. “Examine Contents of Map” on page 14-9

14-3

14 Map Containers

Description of Map Class

14-4

A Map is actually an object, or instance, of a MATLAB class called Map. It is also a
handle object and, as such, it behaves like any other MATLAB handle object. This
section gives a brief overview of the Map class. For more details, see the containers.Map
reference page.

Properties of Map Class

All objects of the Map class have three properties. You cannot write directly to any of
these properties; you can change them only by means of the methods of the Map class.

Property Description Default

Count Unsigned 64-bit integer that represents the total number of |0
key/value pairs contained in the Map object.

KeyType Character vector that indicates the type of all keys char
contained in the Map object. KeyType can be any of the
following: double, single, char, and signed or unsigned
32-bit or 64-bit integer. If you attempt to add keys of an
unsupported type, int8 for example, MATLAB makes
them double.

ValueType |Character vector that indicates the type of values contained |any
in the Map object. If the values in a Map are all scalar
numbers of the same type, ValueType is set to that type. If
the values are all character arrays, ValueType is "char”.
Otherwise, ValueType is "any".

To examine one of these properties, follow the name of the Map object with a dot and
then the property name. For example, to see what type of keys are used in Map mapObj,
use

mapObj - KeyType

A Map is a handle object. As such, if you make a copy of the object, MATLAB does not
create a new Map; it creates a new handle for the existing Map that you specify. If you
alter the Map's contents in reference to this new handle, MATLAB applies the changes
you make to the original Map as well. You can, however, delete the new handle without
affecting the original Map.

Description of Map Class

Methods of Map Class

The Map class implements the following methods. Their use is explained in the later
sections of this documentation and also in the function reference pages.

Method Description
isKey Check if Map contains specified key
keys Names of all keys in Map
length Length of Map
remove Remove key and its value from Map
size Dimensions of Map
values Values contained in Map
See Also

containers.Map | isKey | keys | length | remove | size | values

Related Examples

“Overview of Map Data Structure” on page 14-2
. “Create Map Object” on page 14-6

“Examine Contents of Map” on page 14-9

14-5

14 Map Containers

Create Map Obiject

14-6

A Map is an object of the Map class. It is defined within a MATLAB package called
containers. As with any class, you use its constructor function to create any new
instances of it. You must include the package name when calling the constructor:

newMap = containers._Map(optional keys and_values)

Construct Empty Map Object

When you call the Map constructor with no input arguments, MATLAB constructs
an empty Map object. When you do not end the command with a semicolon, MATLAB
displays the following information about the object you have constructed:

newMap = containers._Map
newMap =
Map with properties:
Count: O

KeyType: char
ValueType: any

The properties of an empty Map object are set to their default values:

+ Count=0

+ KeyType = "char*

* ValueType = "any”

Once you construct the empty Map object, you can use the keys and values methods

to populate it. For a summary of MATLAB functions you can use with a Map object, see
“Methods of Map Class” on page 14-5

Construct Initialized Map Object

Most of the time, you will want to initialize the Map with at least some keys and values
at the time you construct it. You can enter one or more sets of keys and values using the
syntax shown here. The brace operators ({}) are not required if you enter only one key/

value pair:

Create Map Object

mapObj = containers._Map({keyl, key2, ...}, {vall, val2, ._.});

For those keys and values that are character vectors, be sure that you specify them
enclosed within single quotation marks. For example, when constructing a Map that has
character vectors as keys, use

mapObj = containers._Map(.-.
{"keystrl®, “keystr2®, ...}, {vall, val2, ...});

As an example of constructing an initialized Map object, create a new Map for the
following key/value pairs taken from the monthly rainfall map shown earlier in this
section.

KEYS VALUES
Jan 327.2
Feb 368.2
Mar 197.6
Apr 178.4
May 100.0
Jun 69.9
Jul 323
Aug 37.3
Sep 19.0
Oct 37.0
Nov 73.2
Dec 110.9
Annual 1551.0

k = {"Jan", "Feb®, "Mar®, "Apr", “May", "Jun-®,
*Jul®, "Aug®", "Sep", "Oct", "Nov", "Dec”, "Annual®};

v = {327.2, 368.2, 197.6, 178.4, 100.0, 69.9,
32.3, 37.3, 19.0, 37.0, 73.2, 110.9, 1551.0};

rainfallMap = containers.Map(k, V)

rainfal IMap

Map with properties:

14-7

14 Map Containers

14-8

Count: 13
KeyType: char
ValueType: double

The Count property is now set to the number of key/value pairs in the Map, 13, the
KeyType is char, and the ValueType is double.

Combine Map Objects

You can combine Map objects vertically using concatenation. However, the result is not
a vector of Maps, but rather a single Map object containing all key/value pairs of the
contributing Maps. Horizontal vectors of Maps are not allowed. See “Build Map with
Concatenation” on page 14-13, below.

See Also

containers.Map | keys | values

Related Examples

. “Overview of Map Data Structure” on page 14-2
. “Description of Map Class” on page 14-4

. “Examine Contents of Map” on page 14-9

Examine Contents of Map

Examine Contents of Map

Each entry in a Map consists of two parts: a unique key and its corresponding value. To
find all the keys in a Map, use the keys method. To find all of the values, use the values
method.

Create a new Map called ticketMap that maps airline ticket numbers to the holders of
those tickets. Construct the Map with four key/value pairs:

ticketMap = containers.Map(..-.
{"2R175", "B7398", "A479GY", "NzZ14527%,
{"James Enright®, "Carl Haynes®", "Sarah Latham",
"Bradley Reid"});

Use the keys method to display all keys in the Map. MATLAB lists keys of type char in
alphabetical order, and keys of any numeric type in numerical order:

keys(ticketMap)
ans =
"2R175" "A4T79GY*" "B7398* "Nz1452*

Next, display the values that are associated with those keys in the Map. The order of the
values is determined by the order of the keys associated with them.

This table shows the keys listed in alphabetical order:

keys values

2R175 James Enright
A4T79GY Sarah Latham
B7398 Carl Haynes
NZ1452 Bradley Reid

The values method uses the same ordering of values:

values(ticketMap)
ans =

"James Enright” "Sarah Latham® "Carl Haynes* "Bradley Reid"

14-9

14 Map Containers

See Also

containers.Map | isKey | keys | length | remove | size | values

Related Examples
. “Create Map Object” on page 14-6

“Read and Write Using Key Index” on page 14-11

“Modify Keys and Values in Map” on page 14-16
“Map to Different Value Types” on page 14-19

14-10

Read and Write Using Key Index

Read and Write Using Key Index

When reading from the Map, use the same keys that you have defined and associated
with particular values. Writing new entries to the Map requires that you supply the
values to store with a key for each one.

Note: For a large Map, the keys and value methods use a lot of memory as their outputs
are cell arrays.

Read From Map

After you have constructed and populated your Map, you can begin to use it to store and
retrieve data. You use a Map in the same manner that you would an array, except that
you are not restricted to using integer indices. The general syntax for looking up a value
(valueN) for a given key (keyN) is shown here. If the key is a character vector, enclose it
in single quotation marks:

valueN = mapObj(keyN);
Start with the Map ticketMap :
ticketMap = containers._Map(..-.
{"2R175", "B7398", "A479GY", "NzZ1452%%,

{"James Enright®, "Carl Haynes®", "Sarah Latham",
"Bradley Reid"});

You can find any single value by indexing into the Map with the appropriate key:

passenger = ticketMap("2R175%)

passenger
James Enright

Find the person who holds ticket A479GY:

sprintf(” Would passenger %s please come to the desk?\n",
ticketMap("A479GY ™))

ans =

14-11

14 Map Containers

Would passenger Sarah Latham please come to the desk?

To access the values of multiple keys, use the values method, specifying the keys in a
cell array:

values(ticketMap, {"2R175", *"B7398"})
ans =
James Enright” “Carl Haynes®

Map containers support scalar indexing only. You cannot use the colon operator to access
a range of keys as you can with other MATLAB classes. For example, the following
statements throw an error:

ticketMap("2R1757:"B7398")
ticketMap(:)

Add Key/Value Pairs

Unlike other array types, each entry in a Map consists of two items: the value and its
key. When you write a new value to a Map, you must supply its key as well. This key
must be consistent in type with any other keys in the Map.

Use the following syntax to insert additional elements into a Map:
existingMapObj(newKeyName) = newValue;
Start with the Map ticketMap :
ticketMap = containers._Map(..-.
{"2R175", "B7398", "A479GY", "NzZ1452%%,
{"James Enright®, "Carl Haynes®", "Sarah Latham",

"Bradley Reid"});

Add two more entries to the ticketMap Map. Verify that ticketMap now has six key/
value pairs:

ticketMap("947F4") = "Susan Spera“;
ticketMap("417R93") = "Patricia Hughes”;

ticketMap.Count

14-12

Read and Write Using Key Index

ans =

6

List all of the keys and values in ticketMap:

keys(ticketMap), values(ticketMap)

ans =

"2R175" "417R93" "947F4" "A4TOGY" "B7398" "NZ1452*

ans =

"James Enright” "Patricia Hughes"® "Susan Spera® "Sarah Latham®

Build Map with Concatenation

You can add key/value pairs to a Map in groups using concatenation. The concatenation
of Map objects is different from other classes. Instead of building a vector of Map
objects, MATLAB returns a single Map containing the key/value pairs from each of the
contributing Map objects.

Rules for the concatenation of Map objects are:

Only vertical vectors of Map objects are allowed. You cannot create an m-by-n array
or a horizontal vector of Map objects. For this reason, vertcat is supported for Map
objects, but not horzcat.

All keys in each Map being concatenated must be of the same class.

You can combine Maps with different numbers of key/value pairs. The result is a
single Map object containing key/value pairs from each of the contributing Map
objects:

tMapl = containers.Map({"2R175", "B7398", "A479GY"},
{"James Enright", "Carl Haynes", "Sarah Latham"});

tMap2 = containers_Map({"417R93", "NZ1452%, "947F4"},
{"Patricia Hughes®, "Bradley Reid", "Susan Spera®"});

% Concatenate the two maps:
ticketMap = [tMapl; tMap2];

14-13

"Carl H:

14 Map Containers

14-14

The result of this concatenation is the same 6-element Map that was constructed in
the previous section:

ticketMap.Count
ans =

6
keys(ticketMap), values(ticketMap)
ans =

"2R175* "417R93" "947F4" "A479GY" "B7398" "Nz1452*

ans

"James Enright” "Patricia Hughes* "Susan Spera“ "Sarah Latham*®

Concatenation does not include duplicate keys or their values in the resulting Map
object.

In the following example, both objects m1 and m2 use a key of 8. In Map m1, 8 is a key
to value C; in m2, it is a key to value X:

ml
m2

containers.Map({1, 5, 8}, {"A", "B", "C"};
containers.Map({8, 9, 6}, {"X", "Y", "Z"D;

Combine m1 and m2 to form a new Map object, m:
m = [ml; m2];

The resulting Map object m has only five key/value pairs. The value C was dropped
from the concatenation because its key was not unique:

keys(m), values(m)
ans =

[1] [51 61 8l o1

"Carl

Read and Write Using Key Index

A “g- .z e v

See Also

containers.Map | isKey | keys | values

Related Examples
. “Create Map Object” on page 14-6

“Examine Contents of Map” on page 14-9

“Modify Keys and Values in Map” on page 14-16

“Map to Different Value Types” on page 14-19

14-15

14 Map Containers

Modify Keys and Values in Map

14-16

Note: Keep in mind that if you have more than one handle to a Map, modifying the
handle also makes changes to the original Map. See “Modify Copy of Map” on page
14-17, below.

Remove Keys and Values from Map

Use the remove method to delete any entries from a Map. When calling this method,
specify the Map object name and the key name to remove. MATLAB deletes the key and
its associated value from the Map.

The syntax for the remove method is
remove(mapName, “keyname®);
Start with the Map ticketMap :
ticketMap = containers.Map(...
{"2R1757, "B7398", “A479GY", "NZ1452"}%,
{"James Enright®, "Carl Haynes®", "Sarah Latham",
"Bradley Reid"});

Remove one entry (the specified key and its value) from the Map object:

remove(ticketMap, °"NZ1452%);
values(ticketMap)

ans =

"James Enright” "Sarah Latham® "Carl Haynes*

Modify Values

You can modify any value in a Map simply by overwriting the current value. The
passenger holding ticket A479GY is identified as Sarah Latham:

ticketMap("A479GY ")

ans =

Modify Keys and Values in Map

Sarah Latham

Change the passenger's first name to Anna Latham by overwriting the original value for
the A479GY key:

ticketMap("A479GY") = "Anna Latham®;
Verify the change:

ticketMap("A479GY")

ans =

Anna Latham

Modify Keys

To modify an existing key while keeping the value the same, first remove both the key
and its value from the Map. Then create a new entry, this time with the corrected key
name.

Modify the ticket number belonging to passenger James Enright:

remove(ticketMap, "2R175%);
ticketMap("2S185") = "James Enright~;

k = keys(ticketMap); v = values(ticketMap);
strl - ""%s"" has been assigned a new\n-;
str2 - ticket number: %s.\n";

fprintf(strl, v{1})
fprintf(str2, k{1})

"James Enright® has been assigned a new
ticket number: 2S185.

Modify Copy of Map

Because ticketMap is a handle object, you need to be careful when making copies of the
Map. Keep in mind that by copying a Map object, you are really just creating another
handle to the same object. Any changes you make to this handle are also applied to the
original Map.

14-17

14 Map Containers

Make a copy of the ticketMap Map. Write to this copy, and notice that the change is
applied to the original Map object itself:

copiedMap = ticketMap;

copiedMap("Az12345") = "unidentified person”;
ticketMap("AZ12345")

ans =
unidentified person
Clean up:

remove(ticketMap, "AZ12345%);
clear copiedMap;

See Also

containers.Map | 1sKey | keys | length | remove | size | values

Related Examples

. “Create Map Object” on page 14-6

. “Examine Contents of Map” on page 14-9

. “Read and Write Using Key Index” on page 14-11
. “Map to Different Value Types” on page 14-19

14-18

Map to Different Value Types

Map to Different Value Types

It is fairly common to store other classes, such as structures or cell arrays, in a Map
structure. However, Maps are most memory efficient when the data stored in them
belongs to one of the basic MATLAB types such as double, char, integers, and logicals.

Map to Structure Array

The following example maps airline seat numbers to structures that contain ticket
numbers and destinations. Start with the Map ticketMap, which maps ticket numbers
to passengers:

ticketMap = containers._Map(..-.
{"2R175", "B7398", "A479GY", "NZ1452"},
{"James Enright®, "Carl Haynes®", "Sarah Latham®,
"Bradley Reid"});

Then create the following structure array, containing ticket numbers and destinations:

sl.ticketNum = "2S185"; sl.destination
sl.reserved = "06-May-2008"; sl.origin
s2.ticketNum = "947F4"; s2.destination "St. John";
s2.reserved = "14-Apr-2008"; s2.origin "Oakland®;
s3.ticketNum = "A479GY"; s3.destination = "St. Lucia”;

"Barbados”;
"La Guardia“;

s3.reserved = "28-Mar-2008"; s3.origin = "JFK";
s4._ticketNum = "B7398"; s4.destination = "Granada“;
s4._reserved = "30-Apr-2008"; s4.origin = "JFK";

s5.ticketNum = "NZ1452"; sb5.destination = "Aruba”;
sb.reserved = "01-May-2008"; s5.origin = "Denver”;

Map five seats to these structures:
seatingMap = containers._Map(--..
{"23F", "15C", "15B", "09C", "12D"},
{s5, sl1, s3, s4, s2});
Using this Map object, find information about the passenger who has reserved seat 09C:
seatingMap("09C*)

ans =

ticketNum: "B7398"

14-19

14 Map Containers

14-20

destination: "Granada“
reserved: "30-Apr-2008*
origin: "JFK®

Using ticketMap and seatingMap together, you can find the name of the person who
has reserved seat 15B:

ticket = seatingMap("15B").ticketNum;
passenger = ticketMap(ticket)

passenger =

Sarah Latham

Map to Cell Array

As with structures, you can also map to a cell array in a Map object. Continuing with
the airline example of the previous sections, some of the passengers on the flight have
“frequent flyer” accounts with the airline. Map the names of these passengers to records
of the number of miles they have used and the number of miles they still have available:

accountMap = containers.Map(...
{"Susan Spera®,"Carl Haynes","Anna Latham"},
{{247.5, 56.1}, {0, 1342.9}, {24.6, 314.7}});

Use the Map to retrieve account information on the passengers:

nam

e "Carl Haynes";
acct

accountMap(name) ;

fprintf("%s has used %.1F miles on his/her account,\n",
name, acct{l})
fprintf(" and has %.1F miles remaining.\n", acct{2})

Carl Haynes has used 0.0 miles on his/her account,
and has 1342.9 miles remaining.

See Also

cell | containers.Map | isKey | keys | struct | values

Related Examples
. “Create Map Object” on page 14-6

Map to Different Value Types

“Create Structure Array” on page 11-2

“Create Cell Array” on page 12-3

“Examine Contents of Map” on page 14-9

“Read and Write Using Key Index” on page 14-11
“Modify Keys and Values in Map” on page 14-16

14-21

Combining Unlike Classes

“Valid Combinations of Unlike Classes” on page 15-2
“Combining Unlike Integer Types” on page 15-3
“Combining Integer and Noninteger Data” on page 15-5
“Combining Cell Arrays with Non-Cell Arrays” on page 15-6
“Empty Matrices” on page 15-7

“Concatenation Examples” on page 15-8

15 Combining Unlike Classes

Valid Combinations of Unlike Classes

Matrices and arrays can be composed of elements of most any MATLAB data type as
long as all elements in the matrix are of the same type. If you do include elements of
unlike classes when constructing a matrix, MATLAB converts some elements so that all
elements of the resulting matrix are of the same type.

Data type conversion is done with respect to a preset precedence of classes. The following
table shows the five classes you can concatenate with an unlike type without generating
an error (that is, with the exception of character and logical).

TYPE character integer single double logical
character character character character character invalid
integer character integer integer integer integer
single character integer single single single
double character integer single double double
logical invalid integer single double logical

For example, concatenating a double and single matrix always yields a matrix of type
single. MATLAB converts the double element to single to accomplish this.

More About

. “Combining Unlike Integer Types” on page 15-3
. “Combining Integer and Noninteger Data” on page 15-5
. “Combining Cell Arrays with Non-Cell Arrays” on page 15-6

. “Concatenation Examples” on page 15-8

15-2

Combining Unlike Integer Types

Combining Unlike Integer Types

In this section...

“Overview” on page 15-3
“Example of Combining Unlike Integer Sizes” on page 15-3

“Example of Combining Signed with Unsigned” on page 15-4

Overview

If you combine different integer types in a matrix (e.g., signed with unsigned, or 8-bit
integers with 16-bit integers), MATLAB returns a matrix in which all elements are of
one common type. MATLAB sets all elements of the resulting matrix to the data type
of the left-most element in the input matrix. For example, the result of the following
concatenation is a vector of three 16-bit signed integers:

A = [intl6(450) uint8(250) int32(1000000)]

Example of Combining Unlike Integer Sizes

After disabling the integer concatenation warnings as shown above, concatenate the
following two numbers once, and then switch their order. The return value depends on
the order in which the integers are concatenated. The left-most type determines the data
type for all elements in the vector:

A = [int16(5000) int8(50)]
A =

5000 50
B = [int8(50) intl16(5000)]
B =

50 127

The first operation returns a vector of 16-bit integers. The second returns a vector of 8-bit
integers. The element INt16(5000) is set to 127, the maximum value for an 8-bit signed
integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]

15-3

15 Combining Unlike Classes

15-4

50
127

Note You can find the maximum or minimum values for any MATLAB integer type using
the intmax and 1ntmin functions. For floating-point types, use realmax and realmin.

Example of Combining Signed with Unsigned

Now do the same exercise with signed and unsigned integers. Again, the left-most
element determines the data type for all elements in the resulting matrix:

A = [int8(-100) uint8(100)]
A =

-100 100
B = [Uint8(100) int8(-100)]
B =

100 0
The element INt8(-100) is set to zero because it is no longer signed.

MATLAB evaluates each element prior to concatenating them into a combined array. In
other words, the following statement evaluates to an 8-bit signed integer (equal to 50)
and an 8-bit unsigned integer (unsigned -50 is set to zero) before the two elements are
combined. Following the concatenation, the second element retains its zero value but
takes on the unsigned int8 type:

A
A

[int8(50), uint8(-50)]

50 0

Combining Integer and Noninteger Data

Combining Integer and Noninteger Data

If you combine integers with double, single, or logical classes, all elements of
the resulting matrix are given the data type of the left-most integer. For example, all
elements of the following vector are set to Int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

15-5

15 Combining Unlike Classes

Combining Cell Arrays with Non-Cell Arrays

15-6

Combining a number of arrays in which one or more is a cell array returns a new cell
array. Each of the original arrays occupies a cell in the new array:

A = [100, {uint8(200), 300}, “MATLAB"];

whos A
Name Size Bytes Class Attributes
A 1x4 477 cell

Each element of the combined array maintains its original class:

fprintf("Classes: %s %s %s %s\n-", ...
class(A{1}),class(A{2}),class(A{3}).,.class(A{4}))

Classes: double uint8 double char

Empty Matrices

Empty Matrices

If you construct a matrix using empty matrix elements, the empty matrices are ignored
in the resulting matrix:

A = [5.36; 7.01; []: 9.44]
A =

5.3600

7.0100

9.4400

15-7

15 Combining Unlike Classes

Concatenation Examples

15-8

In this section...

“Combining Single and Double Types” on page 15-8
“Combining Integer and Double Types” on page 15-8
“Combining Character and Double Types” on page 15-9

“Combining Logical and Double Types” on page 15-9

Combining Single and Double Types

Combining single values with double values yields a single matrix. Note that
5.73*107300 is too big to be stored as a single, thus the conversion from double to
single sets it to infinity. (The class function used in this example returns the data
type for the input value).

X = [single(4.5) single(-2.8) pi 5.73*107300]
X =
4.5000 -2.8000 3.1416 Inf
class(x) % Display the data type of x
ans =
single

Combining Integer and Double Types

Combining integer values with double values yields an integer matrix. Note that the
fractional part of pi is rounded to the nearest integer. (The int8 function used in this
example converts its numeric argument to an 8-bit integer).

x = [int8(21) int8(-22) int8(23) pi 45/6]
X =
21 -22 23 3 8
class(x)
ans =

int8

Concatenation Examples

Combining Character and Double Types

Combining character values with double values yields a character matrix.
MATLAB converts the doublle elements in this example to their character
equivalents:

X
X

[A® *B* *C" 68 69 70]

ABCDEF
class(x)

ans =
char

Combining Logical and Double Types

Combining logical values with double values yields a double matrix. MATLAB
converts the logical true and false elements in this example to double:

X = [true false false pi sqrt(7)]
X =
1.0000 0 0 3.1416 2.6458
class(x)
ans =
double

15-9

Using Objects

16 Using Objects

Obiject Behavior

16-2

In this section...

“Two Copy Behaviors” on page 16-2

“Handle Object Copy” on page 16-2

“Value Object Copy Behavior” on page 16-2
“Handle Object Copy Behavior” on page 16-3
“Testing for Handle or Value Class” on page 16-6

Two Copy Behaviors
There are two fundamental kinds of MATLAB objects — handles and values.

Value objects behave like MATLAB fundamental types with respect to copy operations.
Copies are independent values. Operations that you perform on one object do not affect
copies of that object.

Handle objects are referenced by their handle variable. Copies of the handle variable
refer to the same object. Operations that you perform on a handle object are visible from
all handle variables that reference that object.

Handle Object Copy

If you are defining classes and want to support handle object copy, see “Implement Copy
for Handle Classes”.

Value Object Copy Behavior

MATLAB numeric variables are value objects. For example, when you copy a to the
variable b, both variables are independent of each other. Changing the value of a does
not change the value of b:

a
b

8;
a;

Now reassign a. b is unchanged:

Object Behavior

a = 6;

b

b =
8

Clearing a does not affect b:

clear a
b

b =
8

Value Object Properties

The copy behavior of values stored as properties in value objects is the same as numeric
variables. For example, suppose vobj1 is a value object with property a:

vobjl.a = 8;

If you copy vobj1 to vobj2, and then change the value of vobj1 property a, the value of
the copied object's property, vobj2.a, is unaffected:

vobj2 =vobji;
vobjl.a = 5;
vobj2.a

ans =
8

Handle Object Copy Behavior

Here is a handle class called HdClass that defines a property called Data.

classdef HdClass < handle
properties
Data
end
methods
function obj = HdClass(val)
if nargin > 0
obj.Data = val;
end

16-3

16 Using Objects

16-4

end
end
end

Create an object of this class:
hobjl = HdClass(8)

Because this statement is not terminated with a semicolon, MATLAB displays
information about the object:

hobj1l =
HdClass with properties:

Data: 8

The variable hobj1 is a handle that references the object created. Copying hobj1 to
hobj2 results in another handle referring to the same object:

hobj2 = hobjl
hobj2 =
HdClass with properties:

Data: 8

Because handles reference the object, copying a handle copies the handle to a new
variable name, but the handle still refers to the same object. For example, given that
hobj1 is a handle object with property Data:

hobj1.Data
ans =
8

Change the value of hobj1's Data property and the value of the copied object's Data
property also changes:

hobjl.Data = 5;
hobj2.Data

ans =

Object Behavior

5

Because hobj2 and hobj1 are handles to the same object, changing the copy, hobj2,
also changes the data you access through handle hobj1:

hobj2_Data = 17;
hobjl.Data

ans =
17
Reassigning Handle Variables

Reassigning a handle variable produces the same result as reassigning any MATLAB
variable. When you create an object and assign it to hobj1:

hobjl = HdClass(3.14);

hobj1 references the new object, not the same object referenced previously (and still
referenced by hobj2).

Clearing Handle Variables

When you clear a handle from the workspace, MATLAB removes the variable, but does
not remove the object referenced by the other handle. However, if there are no references
to an object, MATLAB destroys the object.

Given hobj1 and hobj2, which both reference the same object, you can clear either
handle without affecting the object:

hobjl.Data = 2/8;
clear hobj1
hobj?2
hobj2 =
HdClass with properties:

Data: 256

If you clear both hobj1 and hobj2, then there are no references to the object. MATLAB
destroys the object and frees the memory used by that object.

16-5

16 Using Objects

16-6

Deleting Handle Objects

To remove an object referenced by any number of handles, use delete. Given hobj1 and
hobj2, which both refer to the same object, delete either handle. MATLAB deletes the
object:

hobjl = HdClass(8);
hobj2 = hobj1;
delete(hobjl)
hobj?2

hobj2 =
handle to deleted HdClass

Use clear to remove the variable from the workspace.
Modifying Obijects

When you pass an object to a function, MATLAB passes a copy of the object into the
function workspace. If the function modifies the object, MATLAB modifies only the copy
of the object that is in the function workspace. The differences in copy behavior between
handle and value classes are important in such cases:

* Value object — The function must return the modified copy of the object. To modify
the object in the caller’s workspace, assign the function output to a variable of the
same name

+ Handle object — The copy in the function workspace refers to the same object.
Therefore, the function does not have to return the modified copy.

Testing for Handle or Value Class

To determine if an object is a handle object, use the isa function. If obj is an object of
some class, this statement determines if obj is a handle:

isa(obj, "handle®)

For example, the containers._Map class creates a handle object:

hobj = containers.Map({“"Red Sox","Yankees"},{"Boston”,“New York"});
isa(hobj, "handle®)

ans =

Object Behavior

1

hobj is also a containers.Map object:
isa(hobj, "containers.Map®)
ans =
1
Querying the class of hobj shows that it is a containers.Map object:

class(hobj)

ans =
containers.Map

The class function returns the specific class of an object.

Related Examples
. “Implement Copy for Handle Classes”

16-7

Defining Your Own Classes

All MATLAB data types are implemented as object-oriented classes. You can add data
types of your own to your MATLAB environment by creating additional classes. These
user-defined classes define the structure of your new data type, and the functions, or
methods, that you write for each class define the behavior for that data type.

These methods can also define the way various MATLAB operators, including arithmetic
operations, subscript referencing, and concatenation, apply to the new data types. For
example, a class called polynomial might redefine the addition operator (+) so that it
correctly performs the operation of addition on polynomials.

With MATLAB classes you can

* Create methods that overload existing MATLAB functionality
* Restrict the operations that are allowed on an object of a class

Enforce common behavior among related classes by inheriting from the same parent
class

+ Significantly increase the reuse of your code

For more information, see “Role of Classes in MATLAB”.

Scripts and Functions

Scripts

* “Create Scripts” on page 18-2

+ “Add Comments to Programs” on page 18-4
* “Run Code Sections” on page 18-6

+ “Scripts vs. Functions” on page 18-16

* “Add Functions to Scripts” on page 18-18

18 Scripts

Create Scripts

18-2

Scripts are the simplest kind of program file because they have no input or output
arguments. They are useful for automating series of MATLAB commands, such as
computations that you have to perform repeatedly from the command line or series of
commands you have to reference.

You can create a new script in the following ways:

* Highlight commands from the Command History, right-click, and select Create
Script.

Click the New Script L=55 button on the Home tab.

+ Use the edit function. For example, edit new_file name creates (if the file does
not exist) and opens the file new_file name.If new_file name is unspecified,
MATLAB opens a new file called Untitled.

After you create a script, you can add code to the script and save it. For example, you
can save this code that generates random numbers between 0 and 100 as a script called
numGenerator.m.

columns = 10000;

rows = 1;
bins = columns/100;
rng(now) ;

list = 100*rand(rows,columns);
histogram(list,bins)

Save your script and run the code using either of these methods:

* Type the script name on the command line and press Enter. For example, to run the
numGenerator .m script, type numGenerator.

Click the Run L} button on the Editor tab

You also can run the code from a second program file. To do this, add a line of code with
the script name to the second program file. For example, to run the numGenerator.m
script from a second program file, add the line numGenerator; to the file. MATLAB
runs the code in numGenerator.m when you run the second file.

Create Scripts

When execution of the script completes, the variables remain in the MATLAB workspace.
In the numGenerator .m example, the variables columns, rows, bins, and list remain
in the workspace. To see a list of variables, type whos at the command prompt. Scripts
share the base workspace with your interactive MATLAB session and with other scripts.

More About
. “Run Code Sections” on page 18-6

. “Scripts vs. Functions” on page 18-16
. “Base and Function Workspaces” on page 20-10

. “Create Live Scripts” on page 19-8

18-3

18 Scripts

Add Comments to Programs

18-4

When you write code, it is a good practice to add comments that describe the code.
Comments allow others to understand your code, and can refresh your memory when you
return to it later.

Add comments to MATLAB code using the percent (%) symbol. Comment lines can appear
anywhere in a program file, and you can append comments to the end of a line of code.
For example,

% Add up all the vector elements.
y = sum(Xx) % Use the sum function.

In live scripts, you can also describe a process or code by inserting lines of text before
and after code. Text lines provide additional flexibility such as standard formatting
options, and the insertion of images, hyperlinks, and equations. For more information,
see “Create Live Scripts” on page 19-8.

Note: When you have a MATLAB code file (.m) containing text that has characters in
a different encoding than that of your platform, when you save or publish your file,
MATLAB displays those characters as garbled text. Live scripts (.mIX) support storing
and displaying characters across all locales.

Comments are also useful for program development and testing—comment out any code
that does not need to run. To comment out multiple lines of code, you can use the block
comment operators, %{ and %}:

a = magic(3);

%{

sum(a)

diag(a)

sum(diag(a))

%}
sum(diag(Fliplr(a)))

The %{ and %} operators must appear alone on the lines that immediately precede and
follow the block of help text. Do not include any other text on these lines.

To comment out part of a statement that spans multiple lines, use an ellipsis (. . .)
instead of a percent sign. For example,

Add Comments to Programs

header = ["Last Name, -,
"First Name, °,
"Middle Initial, *,
"Title"]

The MATLAB Editor includes tools and context menu items to help you add, remove, or
change the format of comments for MATLAB, Java, and C/C++ code. For example, if you
paste lengthy text onto a comment line, such as

% This is a program that has a comment that is a little more than 75 columns wide.
disp(“Hello, world™)

5
and then press the %4 button next to Comment on the Editor or Live Editor tab, the
Editor wraps the comment:

% This is a program that has a comment that is a little more than 75
% columns wide.
disp(“Hello, world™)

By default, as you type comments in the Editor, the text wraps when it reaches a
column width of 75. To change the column where the comment text wraps, or to disable
automatic comment wrapping, adjust the Editor/Debugger Language preference
settings labeled Comment formatting.

The Editor does not wrap comments with:

+ Code section titles (comments that begin with %%)
* Long contiguous text, such as URLs

* Bulleted list items (text that begins with * or #) onto the preceding line

Preference changes do not apply in live scripts.

Related Examples

. “Add Help for Your Program” on page 20-6
. “Create Scripts” on page 18-2

. “Create Live Scripts” on page 19-8

More About

. “Editor/Debugger Preferences”

18-5

18 Scripts

Run Code Sections

18-6

In this section...

“Divide Your File into Code Sections” on page 18-6
“Evaluate Code Sections” on page 18-6

“Navigate Among Code Sections in a File” on page 18-8
“Example of Evaluating Code Sections” on page 18-9
“Change the Appearance of Code Sections” on page 18-12

“Use Code Sections with Control Statements and Functions” on page 18-12

Divide Your File into Code Sections

MATLAB files often consist of many commands. You typically focus efforts on a single
part of your program at a time, working with the code in chunks. Similarly, when
explaining your files to others, often you describe your program in chunks. To facilitate
these processes, use code sections, also known as code cells or cell mode. A code section
contains contiguous lines of code that you want to evaluate as a group in a MATLAB
script, beginning with two comment characters (%%).

To define code section boundaries explicitly, insert section breaks using these methods:
* On the Editor tab, in the Edit section, in the Comment button group, click
E

+ Enter two percent signs (%%) at the start of the line where you want to begin the new
code section.

. . . . =
The text on the same line as %% is called the section title El'u'-' Including section titles is
optional, however, it improves the readability of the file and appears as a heading if you
publish your code.

Evaluate Code Sections

As you develop a MATLAB file, you can use the Editor section features to evaluate the
file section-by-section. This method helps you to experiment with, debug, and fine-tune

Run Code Sections

your program. You can navigate among sections, and evaluate each section individually.

To evaluate a section, it must contain all the values it requires, or the values must exist
in the MATLAB workspace.

The section evaluation features run the section code currently highlighted in yellow.
MATLAB does not automatically save your file when evaluating individual code sections.

The file does not have to be on your search path.

This table provides instructions on evaluating code sections.

Operation Instructions

Run the code in the * Place the cursor in the code section.

current section. . .
On the Editor tab, in the Run section, click LE' Run
Section.

Run the code in the + Place the cursor in the code section.

current section, and then |.

move to the next section. On the Editor tab, in the Run section, click Iﬂl Run
and Advance.

Run all the code in the * Type the saved script name in the Command Window.

file. .

On the Editor tab, in the Run section, click [f) Run.

Note: You cannot debug when running individual code sections. MATLAB ignores any
breakpoints.

If your script contains local functions, you cannot run code sections (also known as

code cells) individually. The L‘El Run Section and lﬂ' Run and Advance buttons are
disabled. To run the script, type the saved script name in the Command Window or click

[_) Run. You can run sections individually in live scripts containing local functions.

Increment Values in Code Sections

You can increment numbers within a section, rerunning that section after every change.
This helps you fine-tune and experiment with your code.

18-7

18 Scripts

18-8

To increment or decrement a number in a section:

Highlight or place your cursor next to the number.
2 Right-click to open the context menu.

3 Select Increment Value and Run Section. A small dialog box appears.

= 1.0 +
<+ |2 *
4 Input appropriate values in the = /% text box or ¥/ * text box.
5 Clickthe *, =, X, or ¥ button to add to, subtract from, multiply, or divide the

selected number in your section.

MATLAB runs the section after every click.

Note MATLAB software does not automatically save changes you make to the numbers
in your script.

Navigate Among Code Sections in a File

You can navigate among sections in a file without evaluating the code within those
sections. This facilitates jumping quickly from section to section within a file. You might
do this, for example, to find specific code in a large file.

Operation Instructions

Move to the next section. |* .) .) Iﬂ’
On the Editor tab, in the Run section, click

Advance.

Move to the previous + Press Ctrl + Up arrow.
section.

Move to a specific section. E:;,l]
On the Editor tab, in the Navigate section, use the

Go To= to move the cursor to a selected section.

Run Code Sections

Example of Evaluating Code Sections

This example defines two code sections in a file called sine_wave.m and then
increments a parameter to adjust the created plot. To open this file in your Editor, run
the following command, and then save the file to a local folder:

edit(fullfile(matlabroot, "help”, "techdoc”, "matlab_env", ...
"examples”, "sine_wave.m"))

After the file is open in your Editor:

1

Insert a section break and the following title on the first line of the file.

%% Calculate and Plot Sine Wave
Insert a blank line and a second section break after plot(X,y). Add a section title,
Modify Plot Properties, so that the entire file contains this code:

%% Calculate and Plot Sine Wave
% Define the range for x.

% Calculate and plot y = sin(X).
X = 0:1:6*pi;

y = sin(X);

plot(x,y)

%% Modify Plot Properties

title("Sine Wave™)

xlabel ("x")

ylabel ("sin(X) ")

fig = gcf;

fig.MenuBar = "none-;

Save the file.

Place your cursor in the section titled Calculate and Plot Sine Wave. On the

Editor tab, in the Run section, click [Iil Run Section.

A figure displaying a course plot of sin(X) appears.

18-9

18 Scripts

[|
04l ' | \ . |
" ‘. . /

5 Smooth the sine plot.

Highlight 1 in the statement: X = 0:1:6*pi; .

Right-click and select Increment Value and Run Section. A small dialog box
appears.

= 1.0 +

+ |2 X

3 Type 2 in the T/ * text box.

4 Click the ¥ button several times.

The sine plot becomes smoother after each subsequent click

18-10

Run Code Sections

08} J
06 g
0.4 g
0.2 g

0 J
0.2+ g
0.4} g
06} J
0.8 g

A . L L L L s . . .
2 4 [8 0 12 14 16 18

20

5 Close the Figure and save the file.
6 Run the entire sine_wave.m file. A smooth sine plot with titles appears in a new

Figure.
Sine Wave
1 T T T T T T T
0.8 E
06 B
0.4 g
02 4
=
e 0 7
‘@
0.2+ 4
04} 4
06} 4
08} 4
_1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
X

18-11

18 Scripts

18-12

Change the Appearance of Code Sections

You can change how code sections appear within the MATLAB Editor. MATLAB
highlights code sections in yellow, by default, and divides them with horizontal lines.
When the cursor is positioned in any line within a section, the Editor highlights the
entire section.

To change how code sections appear:

1
On the Home tab, in the Environment section, click I@Preferences.

The Preference dialog box appears.
2 In the left pane, select MATLAB > Colors > Programming Tools.

Under Section display options, select the appearance of your code sections.

Section display options
Highlight sections - | Show lines between sections

You can choose whether to highlight the sections, the color of the highlighting, and
whether dividing lines appear between code sections.

Use Code Sections with Control Statements and Functions

Unexpected results can appear when using code sections within control statements and
functions because MATLAB automatically inserts section breaks that do not appear in
the Editor unless you insert section breaks explicitly. This is especially true when nested
code is involved. Nested code occurs wherever you place a control statement or function
within the scope of another control statement or function.

MATLAB automatically defines section boundaries in a code block, according to this
criteria:

+ MATLAB inserts a section break at the top and bottom of a file, creating a code
section that encompasses the entire file. However, the Editor does not highlight the
resulting section, which encloses the entire file, unless you add one or more explicit
code sections to the file.

Run Code Sections

+ If you define a section break within a control flow statement (such as an i f or while
statement), MATLAB automatically inserts section breaks at the lines containing the
start and end of the statement.

+ If you define a section break within a function, MATLAB inserts section breaks at
the function declaration and at the function end statement. If you do not end the
function with an end statement, MATLAB behaves as if the end of the function occurs
immediately before the start of the next function.

If an automatic break occurs on the same line as a break you insert, they collapse into
one section break.

Nested Code Section Breaks

The following code illustrates the concept of nested code sections:

t
y

for k = 3:2:9
%%
y =y + sin(k*t)/k;
if ~mod(k,3)
%%
display(sprintf(*When k = %.1f",k));
plot(t,y)
end
end
If you copy and paste this code into a MATLAB Editor, you see that the two section

breaks create three nested levels:

+ At the outermost level of nesting, one section spans the entire file.

18-13

18 Scripts

i[= o= 0:.1:pi%4; W |
2 - v = =in(t);

3

4 - [for k= 3:2:9

5 %%

6 — v = v + sin(k*t)/k;

7 - if ~modik,3)

g &%

L= display(sprintf('When k = %.1£',k)):
10 — plot (t, v)

11 = end

12 = - end

MATLAB only defines section in a code block if you specify section breaks at the same
level within the code block. Therefore, MATLAB considers the cursor to be within the
section that encompasses the entire file.

+ At the second level of nesting, a section exists within the for loop.

i[= L= 0:.1:pi%4; W |
2 - = sin(t):

3

4 - [Jfor k= 3:2:9

5 =

6 — v = v + sin(k*t)/k;

7= if ~mod(k, 3)

8 5%

9 - display(sprintf('When k = $.1f',k));
10 — plot (t, v)

11— end

12 - - end

+ At the third-level of nesting, one section exists within the i f statement.

18-14

Run Code Sections

i[= L= 0:.1:pi%4; W |
2 - v = =sin(t);

3

4 - [Jfor k= 3:2:9

5 &%

6 — v = v + sin(k*t)/k;

7 - if ~modik,3)

g 23

L= display(sprintf('When k = %.1£',k)):
10 — plot (t, v)

11 = end

12 = - end

More About

. “Create Scripts” on page 18-2
. “Create Live Scripts” on page 19-8

. “Scripts vs. Functions” on page 18-16

18-15

18 Scripts

Scripts vs. Functions

This topic discusses the differences between scripts and functions, and shows how to
convert a script to a function.

Both scripts and functions allow you to reuse sequences of commands by storing them
in program files. Scripts are the simplest type of program, since they store commands
exactly as you would type them at the command line. However, functions are more
flexible and more easily extensible.

Create a script in a file named triarea.m that computes the area of a triangle:

b
h
a

5;
3;
0.5*(b.*h)

After you save the file, you can call the script from the command line:

triarea

a =
7.5000

To calculate the area of another triangle using the same script, you could update the
values of b and h in the script and rerun it. Each time you run it, the script stores the
result in a variable named a that is in the base workspace.

However, instead of manually updating the script each time, you can make your program
more flexible by converting it to a function. Replace the statements that assign values to
b and h with a function declaration statement. The declaration includes the function
keyword, the names of input and output arguments, and the name of the function.

function a = triarea(b,h)
a = 0.5*(b.*h);
end

After you save the file, you can call the function with different base and height values
from the command line without modifying the script:

al = triarea(l,5)
a2 = triarea(2,10)
a3 = triarea(3,6)
al =

18-16

Scripts vs. Functions

2.5000
a2 =

10
a3 =

9

Functions have their own workspace, separate from the base workspace. Therefore, none
of the calls to the function triarea overwrite the value of a in the base workspace.
Instead, the function assigns the results to variables al, a2, and a3.

More About

. “Create Scripts” on page 18-2
. “Create Functions in Files” on page 20-2
. “Add Functions to Scripts” on page 18-18

. “Base and Function Workspaces” on page 20-10

18-17

18 Scripts

Add Functions to Scripts

18-18

MATLAB scripts, including live scripts, can contain code to define functions. These
functions are called local functions. Local functions are useful if you want to reuse code
within a script. By adding local functions, you can avoid creating and managing separate
function files. They are also useful for experimenting with functions, which can be added,
modified, and deleted easily as needed. Functions in scripts are supported in R2016b or
later.

Add Local Functions

Local functions are only visible within the file where they are defined, both to the script
code and other local functions within the file. They are not visible to functions in other
files, and cannot be called from the command line. They are equivalent to subroutines in
other programming languages, and are sometimes called subfunctions.

To add local functions to a script, first, create the script. Go to the Home tab and select
New > Script. For more information about creating scripts, see “Create Scripts” on page
18-2. You can also “Create Live Scripts” on page 19-8.

After you create the script, add code to the script and save it. For example, add this code
and save it as a script called mystats.m. This code declares an array, determines the
length of the array, and passes both values to the local functions mymean and mymedian.
The local functions mymean and mymedian calculate the average and median of the input
list and return the results.

Note: Including functions in scripts requires MATLAB R2016b or later.

X 1:10;

n length(X);

avg = mymean(X,n);
med = mymedian(x,n);

function a = mymean(v,n)
% MYMEAN Example of a local function.

a = sum(v)/n;
end

Add Functions to Scripts

function m = mymedian(v,n)
% MYMEDIAN Another example of a local function.

w = sort(v);
if rem(n,2) ==
m = w((n + 1)/2);
else
m = (w(n/2) + w(n/2 + 1))/2;
end
end

You can add local functions in any order, as long as they all appear after the rest of
the script code. Each function begins with its own function definition statement, and
ends with the end keyword. The definition statement is the first executable line of any
function, for example, function a = mymean(Vv,n). For more information about
function definition statements, including how to create them, see “Create Functions in
Files” on page 20-2.

Access Help

Although you cannot call a local function from the command line or from functions in
other files, you can access its help using the help command. Specify the names of both
the script and the local function, separating them with a > character:

help mystats>mymean

mymean Example of a local function.
Run Code

To run a script, including all local functions, click the [-f) Run (for scripts) or [__/_) Run
All (for live scripts) button, or type the saved script name in the Command Window.

Note: If your script contains local functions, you cannot run code sections (also known as

code cells) individually. The L‘El Run Section and L@ Run and Advance buttons are
disabled. You can run sections individually in live scripts containing local functions.

Local functions in the current file have precedence over functions in other files. That is,
when you call a function within a program file, MATLAB checks whether the function is

18-19

] 8 Scripts

18-20

a local function before looking for other functions. This allows you to create an alternate
version of a particular function while retaining the original in another file.

Scripts create and access variables in the base workspace. Local functions, similar to
other functions, have their own workspaces that are separate from the base workspace.
Local functions cannot access variables in the workspace of other functions or in the base
workspace, unless you pass them as arguments. For more information, see “Base and
Function Workspaces” on page 20-10.

Add and Run Sections in Live Scripts

The Live Editor does not support running individual sections within local functions. For
this reason, you cannot add section breaks within local functions in live scripts. When
you add local functions to a live script, MATLAB automatically adds a section break
before the first local function definition, and removes all section breaks after it. You can
however run individual sections within the script code, even if they contain a call to one
of the local functions in the file. For more information on section breaks and running live
scripts, see “Run Sections in Live Scripts” on page 19-16.

More About
. “Create Functions in Files” on page 20-2
. “Function Precedence Order” on page 20-43

Live Scripts

19 Live Scripts

What Is a Live Script?

19-2

A MATLAB live script is an interactive document that combines MATLAB code with
embedded output, formatted text, equations, and images in a single environment called
the Live Editor. Live scripts are stored using the Live Script file format in a file with a

-mIXx extension.

Use live scripts to

* Visually explore and analyze problems

Write, execute, and test code in a single interactive environment.

Run blocks of code individually or as a whole file, and view the results and

graphics with the code that produced them.

VhicleF alalties. ik |+

Distribution of Fatalities

W can usa a bar chart 0568 tha distribulion of fatality rales among the stales, Thams ane 11 stales have a fatality

e greater Fan 000 per millon vehicle mies

histeqramiraze, 100
wlasel| ‘Fatalities per Mollien Vehicle MEles®)
ylasel| ‘Musber of States)

Find Correlations in the Data

Wi £ et et with e Clata 1 s i any O e van ables in the tadle ane Comel sk with nignway Tatalties. &
Appears than highway tatality rabes am lower In stales with & higher pertemags Lban populadon

variare & 'urbanPopalation’

scatter| fatalities. (varflame], rate) & Plot fatalities vs. other variables
slate] | variame)

ylagel| 'Percent Fatalities per Million Wehicle Miles®)

hold an

umim = min| fatalities. {variome}];

uman = | fatalities. {warlome)] ;

po= polyFit(fatalitiog, (varblams], rate l); % Calculate & plot leadt squares Liss
plati[xmin wman], pelyval (p, [zrin =wax]))

[T

P st e Wb Vo Wi

Frmims pe e Ve e

ararim

+ Share richly formatted, executable narratives

Add titles, headings, and formatted text to describe a process and include LaTeX
equations, images, and hyperlinks as supporting material.

Save your narratives as richly formatted, executable documents and share them
with colleagues or the MATLAB community, or convert them to HTML or PDF files

for publication.

What Is a Live Script?

| MrbassSolaRadaticenmls 0 | 4 |

Air Mass and Solar Radiation ol

g ligh from, the sun passes Through fra eantt's simosphern, some of the solar radias on will be absorbe. Tha air mass 5 3 funchon of solar eledrion (&). As shown in
e ciagram below, 1l is 2 mexsure of te length of the path of ight through the amesphene (Y] relatyve bo e shorest possible path | X) when the sur's elesabon is 90

ks Haen

atrmcaphers

Thee Langer e air eross, e bt radtalion neadhes e oround. The 87 mass can be Cal oulsed fom

AN =

R——]
Ther the solar radation (in Kvdm*2) reathing Lhe ground can be calzulated from Be empeical squsbion
sRed = 1353
& = Is{cosd({Se-alpha) + B.SEG?E‘I'E.BMSMIFHBI"-I.G!\SJI.
SRed = 1.353%0. 7"(AMTB.ETE] % K/mZ
dispi[&ir Mass = ° mumZstriaH) Solar Radistion = ' mumdstrisRad) ' WWie~z"])

Alr Hesz = | G083 Solar Rediation = 853104 kiis™Z

Create interactive lectures for teaching

+ Combine code and results with formatted text and mathematical equations.
+ Create step-by-step lectures and evaluate them incrementally to illustrate a topic.
+ Modify code on the fly to answer questions or explore related topics.

+ Share lectures with students as interactive documents or in hardcopy format, and
distribute partially completed files as assignments.

19-3

19 Live Scripts

19-4

Lacturil sils

Hoamewarl

+

Lising the tec hrigues. desc ried ahow 1 complebe: T following & weises:

Exprgise 4; Weits MATLAR poce o caituials the 3 cube ipoks of

% Pt your cods her

Exgrose 3 Wrike MATLAS coce o calculale the 5 8fth roots of -1

Exercisg 3 De=serite e eralhamatc o ponoach you would B3k 10 caltulae the o™ roots of an abirary comples number. Inelude T squarbons you used in your

oAl

|Coes £ b eoder Ao h e}

Live Script vs. Script

Live scripts differ from plain code scripts in several ways. This table summarizes the
main differences.

Live Script Script
File Live Script file format. For more Plain Text file format
Format information, see “Live Script File
Format (.mlx)” on page 19-47
File -mIx -m
Extension
Output With code in Editor In Command Window
Display
Internation| Interoperable across locales Non-7-bit ASCII characters are
not compatible across all locales
Text Add and view formatted text in Editor |Use publishing markup to add
Formatting| formatted text, publish to view

What Is a Live Script2

Live Script
Visual
Viewing a Penny
Representa N
This exampie shows four technigues to visualize the surface data of a pen
fil= FENNY MAT conlains measurements made at the Nalianal instilule of
Slandadds and Technolkagy of the deplh of the Mol used 16 Nl a U S @
samphed on a 128-0y-128 grid
L] &% Drawing a Contoor Flot
Ul‘ﬂwmﬁﬂ’:ﬂ"mur?lﬂl 10 % Draw a concour ploT wich 15 copper colored contoar lim
Craw & contour phol with 15 copper cokred conlour Ines &l
1z - lond penny.mAT
load perey mat 13 - GENTIEE (Fp ko)
contour (P, 15} 4 = calormap| =1
colomapi coppar] 18 - axis &
axls 1] sgeare 16
it
1 &% Drawiesg a Paeadocolor Plot
Drawing a Pseudocalor Plot 18 % CDraw a pasudocalor ploc with brighcneas preporcional
Craw & prewudoccior plot with Brighiness proportional to height 20
Zl = poolar [F)
pealar{P) 22 = AxiE 1] =guare
axis ij sgmare 23 = shading flat
shading flat 4
k13
.
Requirements

+ MATLAB R2016a — MATLAB supports live scripts in versions R2016a and above.
You can open live scripts as code only files in MATLAB versions R2014b, R2015a, and
R2015b.

Caution: Saving a live script in MATLAB versions R2014b, R2015a, and R2015b
causes all formatted text, images, hyperlinks, equations, and generated output
content to be lost.

* Operating System — MATLAB supports live scripts in most of the operating systems
supported by MATLAB. For more information, see System Requirements.

Unsupported versions include:

* Red Hat Enterprise Linux 6.
+ SUSE Linux Enterprise Desktop versions 13.0 and earlier.

* Debian 7.6 and earlier.

19-5

http://www.mathworks.com/support/sysreq/current_release/index.html

19 e Scripts

19-6

Unsupported Features

When deciding whether to create a live script, it is important to note several features
that the Live Editor does not support:

Functions and classes — The Live Editor only supports functions in live scripts. You
can create functions in the Live Editor by including them at the end of a live script.
For more information, see “Add Functions to Scripts” on page 18-18. To create class or
function files, create them as plain code files (.m). You then can call the functions and
classes from your live scripts.

Debugging using the graphical debugger — In the Live Editor, you cannot set
breakpoints graphically or pause the execution of a live script using the Pause
button. To debug your file, see Debugging in live scripts. Alternatively, you can Save
your live script as a plain code file (.m).

If a breakpoint is placed in a plain code file (.m) that is called from a live script,
MATLAB ignores the breakpoint when the live script is executed.

Editor preferences — The Live Editor ignores most Editor preferences, including
custom keyboard shortcuts and Emacs-style keyboard shortcuts.

Generating Reports — MATLAB does not include live scripts when generating
reports. This includes Code Analyzer, TODO/FIXME, Help, Contents, Dependency,
and Coverage reports.

Save Live Script as Script

To save a live script as a plain code file (.m).

3

On the Live Editor tab, in the File section, select Save > Save As....

In the dialog box that appears, select MATLAB Code Ffiles (*.m) asthe Save as
type.

Click Save.

When saving, MATLAB converts all formatted content to publish markup.

Related Examples

“Create Live Scripts” on page 19-8
“Create Scripts” on page 18-2

What Is a Live Script?

More About

. “Live Script File Format (.mlx)” on page 19-47

19-7

19 Live Scripts

Create Live Scripts

In this section...

“Open New Live Script” on page 19-8
“Run Code and Display Output” on page 19-9
“Format Live Scripts” on page 19-12

Visualizations B=

Use toget 1 your data appear alongside the code that
produced them. Here we see that 11 states have > 2% fatality rate per million vehicle miles.

nistogram(pctPertillion, 10)
xlapel(‘Percent Fatalities per Hillion Vehicle Hiles')
ylabel('Nunber of States')

Teaching with the Live Editor

This example is a Live Script created with the Live Editor. The Live Editor allows you to have
results, and graphics all together in a single interactive environment. You can also add forma
equations, images, and hyperiinks to describe your analysis. N

This Live Script Example shows how the Live Editor ¢an be used for instruction. The code is

executable. Provide students with a copy of the Live Seript so they ¢an follow along during ¢l 8

7 Viewing a Penny
Use Sections to Divide a Lecture into Logical Parts

>

This example shows four techniques to visualize the
surface data of a penny. The file PENNY.MAT contains
measurements made at the National Institute of Standards
and Technology of the depth of the mold used to minta U
S. penny, sampled on a 128-by-128 grid.

Today we're going to talk about finding the roots of 1. What does it mean to find the n” root «
™ roots of 1 are the solutions to the equation 3" -~ 1 = 0.

For square roots, this is easy. The values are x = £ /T = £1. For higher order roots, it gete
more difficut.

Number of States

Drawing a Contour Plot

Add Equations to Explain the Mathemetics
T find the cube roots of 1 we need to solve the equation x’ - 1 = 0. We can factor this equ:
get

(-1 +x+1) =0

So the first cube root is 1. Now we can use the quadratic formuia to get the second and third
roots.

12 14 16 18 2
Percent Fatalities per Milion Vehicle Miles

22

24

Draw a contour plot with 15 copper colored contour lines.

load penny.mat
contour (P, 15)
colormap(copper)
axis i) square

Drawing a Pseudocolor Plot

Draw a pseudocolor plot with brightness proportional to
height

S 4

Live scripts are program files that contain your code, output, and formatted text
together, in a single interactive environment called the Live Editor. In live scripts,
you can write your code and view the generated output and graphics with the code
that produced it. Add formatted text, images, hyperlinks, and equations to create an

interactive narrative that can be shared with others.

Open New Live Script

To open a new live script, use one of these methods:

On the Home tab, in the New drop-down menu, select Live Script |§|

+ Highlight commands from the Command History, right-click, and select Create Live

Script.

19-8

Create Live Scripts

* Use the edit function. To ensure that a live script is created, specify a .mlIx
extension. For example:

edit penny.mlx

If an extension is not specified, MATLAB defaults to a file with .m extension, which
only supports plain code.

Open Existing Script as Live Script

If you have existing scripts, you can open them as live scripts. Opening a script as a live
script creates a copy of the file, and leaves the original file untouched. MATLAB converts
publishing markup from the original script to formatted content in the new live script.

Only script files can be opened as live scripts. Functions and classes are not supported in
the Live Editor, and cannot be converted.

To open an existing script (.m) as a live script (-mIx), use one of these methods:

* From the Editor — Open the script in the Editor, right-click the document tab, and
select Open scriptName as Live Script from the context menu. You can also go
to the Editor tab, click Saver, and select Save As. Then, set the Save as type: to
MATLAB Live Scripts (*.mIx) and click Save.

* From the Current Folder browser — Right-click the file in the Current Folder browser
and select Open as Live Script from the context menu.

Note: You must use one of the described conversion methods to convert your script into
a live script. Simply renaming the script with a .mIX extension does not work, and can
corrupt the file.

Run Code and Display Output

After you create a live script, you can add code and run it. For example, add this code
that plots a vector of random data and draws a horizontal line on the plot at the mean.

n = 50;
r = rand(n,1);
plot(r)

m = mean(r);

19-9

19 Live Scripts

hold on

plot([0,n], [m,m])

hold off

title("Mean of Random Uniform Data®)

| Untitled.mbx * |+ |

n

50;

r rand(n,1);
plot{r)

m = mean(r);

hold on

plot{[@,n], [m,m])

hold off

title('Mean of Random Uniform Data')

To run the code, click the vertical striped bar to the left of the code. Alternatively, go

to the Live Editor tab and in the Run section, click Run Section. You do not need to
save your live script to run it. When you do save your live script, MATLAB automatically
saves it with a .mIXx extension.

By default, MATLAB displays the output to the right of the code. Each output displays
with the line that creates it, like in the Command Window.

| plotRand.mkx |T\
Mean of Random Uniform Data =
n = 50; 1 == i
r = rand(n,1)] oora (LI WM A [
plot(r) osl |||] I:I [Vl 1 Wl o4
07 | " | 1R | Tal I\ (f yi
m = mean(r); b 1] 1 RIS ',Jll‘ |‘|| [
hold on nw i| FI! \qﬁ I]‘ 1 /
plot([0,n],[m,m]) AR "oy 'I"il I[N
hold off st [1] { || |-; [LIN
title('Mean of Random Uniform Data') oaf | [| ’: ” h' | |[: Il
I/ Il | | |
ozt | If \ ' I | l -
| e AV
. | PV
03 5 10 15 20 b i s 40 45 S0

To move the output in line with the code, use either of these methods:

19-10

Create Live Scripts

plotRand.mlx

n = 50;

In top right of the Editor window, click the L™/ icon.
Go to the View tab and in the Layout section, click the Output Inline button.

+

EE

r = rand(n,1);

plot(r)

m = mean(r);

hold on

plot([@,n],[m,m])

hold off

title('Mean of Random Uniform Data')

0.9

08

0771

0.6

051

041

03r

0.2r

017

Mean of Random Uniform Data

1N oy
F .-"] | || | | |I |“'-, ."II "':II'. }|
T T u

| 1 | |~ | |)

| f

| ||| | | | | |I| | | ‘ Il-"l]I | | II | f_
/

] "||‘|,'|I | I|"||" ‘|'|‘| A

| | | ‘ |||‘ u

| ﬂ: | : | PJ

[VN |
v : |:

| |' |

.

5 10 15 20 25 30 35 40 45 50

You can further modify the output display in these ways:

Change the size of the output display panel — With output on the right, drag left
or right on the resizer bar between the code and output.

Clear all output — Right-click in the script and select Clear All Output.
Alternatively, go to the View tab and in the Qutput section, click the Clear all
Output button.

Disable the alignment of output to code — With output on the right, right-click
the output section and select Disable Synchronous Scrolling.

19-11

19 Live Scripts

19-12

Open output in a separate window — Click the (%) icon in the upper-right corner
of the output. Variables open in the Variables editor, and figures open in a new figure

window.

Modify figures interactively — Use the tools in the upper-right corner of the
figure axes or in the Figure toolstrip to explore the data and add formatting and
annotations. For more information, see “Modify Figures in Live Scripts” on page
19-19.

Format Live Scripts

You can add formatted text, hyperlinks, images, and equations to your live scripts to
create a presentable document to share with others.

To insert an item, go to the Live Editor tab and in the Insert section, select one of these
options:

|=| Code — This inserts a blank line of code into your live script. You can insert a
code line before, after, or between text lines.

|=I Text — This inserts a blank line of text into your live script. A text line can
contain formatted text, hyperlinks, images, or equations. You can insert a text line
before, after, or between code lines.

|=I| Section Break — This inserts a section break into your live script. Insert a
section break to divide your live script into manageable sections that you can evaluate
individually. In live scripts, a section can consist of code, text, and output. For more
information, see “Run Sections in Live Scripts” on page 19-16.

z Equation — This inserts an equation into your live script. Equations can only
be added in text lines. If you insert an equation into a code line, MATLAB places
the equation in a new text line directly under the selected code line. For more
information, see “Insert Equations into Live Scripts” on page 19-33

é Hyperlink — This inserts a hyperlink into your live script. Hyperlinks can only
be added in text lines. If you insert a hyperlink into a code line, MATLAB places the
hyperlink in a new text line directly under the selected code line.

== Image — This inserts an image into your live script. Images can only be added in
text lines. If you insert an image into a code line, MATLAB places the image in a new
text line directly under the selected code line.

Create Live Scripts

Format Text

You can further format text using any of the styles included in the Text Style section.
Use the down arrow to the right of the section to display all the available text style
options. Styles include Normal, Heading, Title, Bulleted List, and Numbered List.

|AaBI:|Cc | AaEhccl lAthil

Normal Heading Title

You also can apply standard formatting options from the Format section, including bold

B, italic I , underline H, and monospace H.
Autoformatting

For quick formatting in live scripts, you can use a combination of keyboard shortcuts and

character sequences. Formatting appears after the final character in a sequence has been
entered.

This table shows a list of formatting styles and their available keyboard shortcuts and
autoformatting sequences.

Formatting Style Keyboard Shortcut Autoformatting sequence
Title Ctrl + Alt + LL # text + Enter
Heading Ctrl+ Alt+ H ## text + Enter

Section break with heading |With cursor at beginning of |%% text + Enter
line with text:

Ctrl + Alt + H, then Ctrl +

Alt + Enter
Section break Ctrl + Alt + Enter %% + Enter
-——+ Enter
*** + Enter
Bulleted list Ctrl+ Alt+ U * text

- text

19-13

19 Live Scripts

Formatting Style Keyboard Shortcut Autoformatting sequence
+ text
Numbered list Ctrl + Alt+ O number . text
Italic Ctrl +1 *text*
text
Bold Ctrl + B **text**
_ text__
Bold and italic Ctrl + B, then Ctrl +1 *xEtext**r*
text
Monospace Ctrl + M “text”
| text]
Underline Ctrl+ U None
LaTeX equation Ctrl+ Alt + G $LaTeX$
Hyperlink Ctrl+ K URL + Space or Enter
<URL>
[Label](URL)

Note: Title, heading, section break, and list sequences must be entered at the beginning
of a line.

There may be times when you want an autoformatting sequence such as *** to appear
literally. To display the characters in the sequence, escape out of the autoformatting

by pressing the Backspace key or by clicking Undo 'QE,} For example, if you type ##
text + Enter, a heading with the word text appears. To undo the formatting style
and simply display ## text, press the Backspace key. You can only escape out of a
sequence directly after completing it. Once another character is entered, or the cursor is
moved, escaping is no longer possible.

19-14

Create Live Scripts

To revert the autoformatting for LaTeX equations and hyperlinks at any point, use the
Backspace key.

To force formatting to reappear after escaping out of a sequence, click the Redo E:)
button. You can only redo an action directly after escaping it. Once another character is
entered, or the cursor is moved, the redo action is no longer possible. In this case, to force
the formatting to reappear, delete the last character in the sequence and type it once
again.

To disable all or certain autoformatting sequences, you can adjust the “Editor/Debugger
Autoformatting Preferences”.

Related Examples

. “Run Sections in Live Scripts” on page 19-16

. “Modify Figures in Live Scripts” on page 19-19

. “Insert Equations into Live Scripts” on page 19-33
. “Share Live Scripts” on page 19-45

. “What Is a Live Script?” on page 19-2

19-15

19 e Scripts

Run Sections in Live Scripts

19-16

Divide Your File Into Sections

Live scripts often contain many commands and lines of text. You typically focus efforts on
a single part of your program at a time, working with the code and related text in pieces.
For easier document management and navigation, divide your file into sections. Code,
output, and related text can all appear together, in a single section.

To insert a section break into your live script, go to the Live Editor tab and in the
Insert section, click the Section Break button. The new section is highlighted in blue,
indicating that it is selected. A vertical striped bar to the left of the section indicates that
the section is stale. A stale section is a section that has not yet been run, or that has been
modified since it was last run.

This image shows a new blank section in a live script.

To delete a section break, click the beginning of the line directly after the section break
and press Backspace. You can also click the end of the line directly before the section
break and press Delete.

Evaluate Sections

Run your live script either by evaluating each section individually or by running all
the code at once. To evaluate a section individually, it must contain all the values it
requires, or the values must exist in the MATLAB workspace. Section evaluation runs
the currently selected section, highlighted in blue. If there is only one section in your
program file, the section is not highlighted, as it is always selected.

This table describes different ways to run your code.

Operation Instructions

Run the code in the * Click the bar to the left of the section. If the bar is not

selected section. visible, hover the mouse on the left side of the section
until the bar appears.

Run Sections in Live Scripts

Operation

Instructions

:| columns

OR

On the Live Editor tab, in the Run section, click rél
Run Section.

Run the code in the
selected section, and then
move to the next section.

* On the Live Editor tab, in the Run section, select

|\@‘Run and Advance.

Run the code in the
selected section, and then
run all the code after the
selected section.

* On the Live Editor tab, in the Run section, select

I\@‘Run to End.

Run all the code in the
file.

On the Live Editor tab, in the Run section, click [>
Run All

OR

* Type the saved script name in the Command Window.

View Code Status

While your program is running, a status indicator 0 appears at the top left of the Editor
window. A gray blinking bar to the left of a line indicates the line that MATLAB is
evaluating. To navigate to the line, click the status indicator.

If an error occurs while MATLAB is running your program, the status indicator turns

solid red M. To navigate to the error, click the status indicator. An error icon O to the
right of the line of code indicates the error. The corresponding error message is displayed

as an output.

19-17

19 e Scripts

19-18

Debugging

You can diagnose problems with your live script using several debugging methods:

* Visually — Remove semi-colons from the end of code lines to view output and
determine where the problem occurs. To make visual debugging easier, live scripts
display each output with the line of code that creates it.

* Programmatically — Use the command line debugger to create and navigate through
breakpoints. For a list of available command line debugging functions, see the
“Debugging” documentation.

Note: Debugging using the graphical debugger is not supported in live scripts. For more
information, see “What Is a Live Script?” on page 19-2

Related Examples

. “Modify Figures in Live Scripts” on page 19-19
. “Create Live Scripts” on page 19-8

. “Share Live Scripts” on page 19-45

. “What Is a Live Script?” on page 19-2

Modify Figures in Live Scripts

Modify Figures in Live Scripts

You can modify figures interactively in the Live Editor. Use the provided tools to explore
data and add formatting, annotations, or additional axes to your figures. Then, update
your code to reflect changes using the generated code.

Explore Data

Use the tools in the upper-right corner of each axes to pan, zoom, and rotate a figure in
your script. These tools appear when you hover over the axes of a selected figure.

* {&— Add data tips to display data values.

¢ __ Rotate the plot (3-D plots only).
* {— Pan the plot.

2, @ — Zoom in and out of the plot.

To undo or redo an action, click % or ‘E:) at the upper right corner of the toolstrip. To
undo all pan, zoom, and rotate actions on a figure, right-click the axes and select Reset
to Original View.

Note: When you open a saved live script, appears next to each output figure,
indicating that the interactive tools are not available yet. To make these tools available,
run the live script.

For example, create a live script called patients._mlx and add code that loads the
health information for 100 different patients.

load patients
Run the code by going to the Live Editor tab and clicking [> Run AlL

Add a scatter plot that shows the height versus weight of two groups of patients, female
and male.

load patients

19-19

19 Live Scripts

figure

Gender = categorical (Gender);
scatter(Height(Gender=="Female®) ,Weight(Gender=="Female"));
hold on

scatter(Height(Gender=="Male") ,Weight(Gender=="Male"));
hold off

Run the code to create the plot.

2107
200 |
o o o B
190 = ; s
o TN + T = : £
C g :
180 [o o O o 8
e 8 o o =+
170 | W &
L] -
o i
160 | o
150 |
8
= Q Fe] K] o
140 - L L
= & . .
i) =] . 8 g] o O o
130 :‘= g o o = 8 [
o © i ¥ =
120 | 3 _‘ A e
O ~ o
110 =
60 62 64 66 68 70 72

Explore the points where the patient height is 64 inches. Select the @ button and click
one of the data points where height is 64. MATLAB zooms into the figure.

19-20

Modify Figures in Live Scripts

;E:f >
180 ¢ s
70 [
160
150 |
)
bt
e & = e
a0t 8
= € o]
] O - p
A O & 8] ,
30 g] .) Q ;
) 4 'y
v o Y .
=)
= &]
123 5 ':-‘ __'.: __'-
62 653 64 65 6E &7 5 &4

L-o0e ~

¥lim{[61.31 &9.31])
'_-.-'].ir'lﬁ [116.7 183.31)

Update Code Copy

Update Code with Figure Changes

When modifying output figures in live scripts, changes to the figure are not automatically
added to the script. With each interaction, MATLAB generates the code needed to
reproduce the interactions and displays this code either underneath or to the right of

the figure. Use the Update Code button to add the generated code to your script. This
ensures that the interactions are reproduced the next time you run the live script.

For example, in the live script patients.mlx, after zooming in on patients with a height
of 64, click the Update Code button. MATLAB adds the generated code after the line
containing the code for creating the plot.

load patients

19-21

19 e Scripts

figure

Gender = categorical (Gender);
scatter(Height(Gender=="Female") ,Weight(Gender=="Female"));
hold on

scatter(Height(Gender=="Male") ,Weight(Gender=="Male"));
hold off

x1im([61.31 69.31])

ylim([116.7 183.3])

If MATLAB is unable to determine where to place the generated code, the Update Code
button is disabled. This occurs, for example, if you modify the code without running

the script again. In this case, use the Copy button to copy the generated code into the
clipboard. You then can paste the code into your script at the appropriate location.

Add Formatting and Annotations

In addition to exploring the data, you can format and annotate your figures interactively
by adding titles, labels, legends, grid lines, arrows, and lines. To add an item, first

select the desired figure. Then, go to the Figure tab and, in the Annotations section,
select one of the available options. Use the down arrow on the right side of the section

to display all available annotations. To add a formatting or annotation option to your
favorites, click the star at the top right of the desired annotation icon. To undo or redo a

formatting or annotation action, click % or Eﬁ' at the upper right corner of the toolstrip.

Annotation options:

Title — Add a title to the axes. To modify an existing title, click the existing
title and enter the modified text.

— X-Label, Y-Label — Add a label to the axes. To modify an existing label,
click the existing label and enter the modified text.
: [=]

Legend — Add a legend to the figure. To modify the existing legend
descriptions, click the existing descriptions and enter the modified text. Select
Remove Legend from the Annotations section to remove the legend from the axes.

ﬂ Colorbar — Add a colorbar legend to the figure. Select Removed Colorbar
from the Annotations section to remove the colorbar legend from the axes.

19-22

Modify Figures in Live Scripts

@ Grid, E X-Grid, m Y-Grid — Add grid lines to the figure. Select

Remove Grid from the Annotations section to remove all the grid lines from the
axes.

.

™~ Line, ~~ Arrow, ~ Text Arrow, Double Arrow — Add a line

or arrow annotation to the figure. Draw the arrow from tail to head.

For example, suppose that you want to add formatting and annotations to the figure in
patients_mlx.

1

Add a title — In the Annotations section, select Title. A blue rectangle
appears prompting you to enter text. Type the text Weight vs. Height and press
Enter.

Add X and Y Labels — In the Annotations section, select — X-Label. A blue
rectangle appears prompting you to enter text. Type the text Height and press

Enter. Select | Y-Label. A blue rectangle appears prompting you to enter text.
Type the text Weight and press Enter.

=]
Add a legend — In the Annotations section, select Legend. A legend
appears at the top right corner of the axes. Click the datal description in the legend
and replace the text with Female. Click the data2 description in the legend and
replace the text with Male. Press Enter.

FEH

Add grid lines — In the Annotations section, select Grid. Grid lines appear

in the axes.

.
Add an arrow annotation — In the Annotations section, select ~ Text
Arrow. Drawing the arrow from tail to head, position the arrow on the scatter plot
pointing to the lightest patient. Enter the text Lightest Patient and press Enter

Update the code — In the selected figure, click the Update Code button. The live
script now contains the code needed to reproduce the figure changes.

load patients

figure

19-23

19 e Scripts

Gender = categorical(Gender);
scatter(Height(Gender=="Female") ,Weight(Gender=="Female®));
hold on

scatter(Height(Gender=="Male") ,Weight(Gender=="Male"));
hold off

x1im([61.31 69.31])
ylim([116.7 183.3])

grid on

legend({"Female®,"Male"})

title("Weight vs Height®)

xlabel ("Height")

ylabel ("Weight™)

annotation("textarrow®,[0.455 0.3979],[0-3393 0.13],"String", "Lightest Patient");

19-24

Modify Figures in Live Scripts

Weight vs Height

180 ¢ o o Female
1 Male
170 | he 5
160
5
w 150 |
= 8
iy - I
T o O fo o
140 |
=} Gightest Patient ©
: o & i
o & e i)
130 [&2 f 2 T
T
i =4
120 ’ =
62 63 66 &7] 69
Code ~
grid on

l=gend({'Female", "Mal=s'}]

title('Weight vs Height')

wlabel{ "Height')

ylabel | ‘Weight')

annotation('textarrow’, [@.455 @.3979],[0.3393 0.13], 'String', "Lightest Pat:

Update Code Copy

Add and Modify Multiple Subplots

You can combine multiple plots by creating subplots in a figure. To add multiple subplots
to your figure, use the Subplot button to divide the figure into a grid of subplots. First,
select the desired figure. Then, go to the Figure tab and choose a subplot layout using
the Subplot~ button. You only can add additional subplots to a figure if the figure
contains one subplot. If a figure contains multiple subplots, the Subplot button is
disabled.

19-25

19 Live Scripts

19-26

For example, suppose that you want to compare the blood pressure of smoking and non-
smoking patients. Create a live script called patients_smoking.mlIx and add code that
loads the health information for 100 different patients.

load patients

Run the code by going to the Live Editor tab and clicking [> Run AL

Add a scatter plot that shows the systolic blood pressure of patients that smoke versus
the systolic blood pressure of patients that do not smoke. Run the code.

load patients

figure
scatter(Age(Smoker==1),Systolic(Smoker==1));
hold on
scatter(Age(Smoker==0),Systolic(Smoker==0));
hold off

In the Figure tab, select Subplot= and choose the layout for two horizontal graphs.

Modify Figures in Live Scripts

, g©° o8
2| - o o ,:-'E [
L - ¢ e .
1304 a3 o 8 B8 ofso
o = go & -~ - i% & o oo -, N
120 F - H = o v R e o] Lo W !
] - L ™y & sl o] ey L
i #] - JE = 1=} ~ 5 e
110 | ,
1D_:] 1 L L 1 1
25 30 35 40 IS 50
1 ™~
05|
] 0.1 02 03 04 05 06 0.7 0g 0.9 1
Code ~
subploti(2,1,1,gca)
subplot(2,1,2)

Update Code Copy

In the newly created figure, click the Update Code button. The live script now contains
the code needed to reproduce the two subplots.

load patients

figure

scatter (Age(Smoker==1),Systolic(Smoker==1));
hold on

scatter (Age(Smoker==0),Systolic(Smoker==0));
hold off

subplot(2,1,1,gca)
subplot(2,1,2)

19-27

19 e Scripts

19-28

Add a scatter plot that shows the diastolic blood pressure of patients that smoke versus
the diastolic blood pressure of patients that do not smoke. Run the code.

load patients

figure

scatter (Age(Smoker==1),Systolic(Smoker==1));
hold on

scatter (Age(Smoker==0),Systolic(Smoker==0));
hold off

subplot(2,1,1,gca)
subplot(2,1,2)

scatter(Age(Smoker==1),Diastolic(Smoker==1));

hold on
scatter (Age(Smoker==0) ,Diastolic(Smoker==0));
hold off
Add formatting:
] —
Add titles to each subplot — In the Annotations section, select Title. A

blue rectangle appears in each subplot prompting you to enter text. Type the text
Systolic Blood Pressure of Smokers vs Non-Smokers in the first subplot
and Diastolic Blood Pressure of Smokers vs Non-Smokers in the second
subplot and press Enter.

Modify Figures in Live Scripts

140 ¢

] : L&
. 3 o8
130 } oo o O
‘{a‘ o QDEG@ -;'}.:"-gl::f-_g o %-::: dgi\;‘
F o 860 06888380 087000
] = Q o R R Bt = O
110 F 3 o
lw 1 1 L 1]
25 30 35 40 45 50
1004 -
o O 8] o i
\ 09 o o B
90 [8, 8 c%e, °@8S ¥ o
DE O & = B B Q
o) 4 . Q - D -8 .
80% 095’”"‘.@ 8388 068,98 i
) 0¥ ~¥gBo0go ¥ % go"
70 5 o
60 ; ; ;
25 a0 35 40 45 S50

Add grid lines to each subplot — In the Annotations section, select @ Grid.
An Add Grid icon appears on each subplot. Click the Add Grid icon on each

subplot. Grid lines appear in both subplots.

19-29

19 Live Scripts

Systolic Blood Pressure of Smokers vs Non-Smokers
140

o] " O
o 8 52
130 & o 2) ' £ o
P o E-!D@o@ ‘E‘@'%S o 0O J%il-‘
120 - i }: o o : : :Wj-d:' e E:: < :_.. -:E = -~ f: O
i Lo} 5@ S8 ox YL
£x -,":. [\:—} -;_"_'_- . L)]
110 | o o
1m 1 1 L 1]
25 30 35 40 45 50
Diastolic Blood Pressure of Smokers vs Non-Smokers
1004
© 9 Y a8 o
90 i'-' a H @ < e © g o o 0
o8 D00, . & - Bk
8¢ oo90%0f ghwsg® 8 o8 " Bo
H oe - ma 9 [- & P
C" L ’\"‘, L
70| & o
60 . . . ;
25 30 35 40 45 50
Code ~

subplot(2,1,1)
title('systolic Blood Pressure of Smokers ws Non-Smokers')
subplot(2,1,2)
title('Diastolic Blood Pressure of Smokers vs Nonm-Smokers')

| Update Code | | Copy |

3 Update the code — In the selected figure, click the Update Code button. The live
script now contains the code needed to reproduce the figure changes.

load patients

figure

scatter (Age(Smoker==1),Systolic(Smoker==1));
hold on

scatter (Age(Smoker==0),Systolic(Smoker==0));
hold off

subplot(2,1,1,gca)

19-30

Modify Figures in Live Scripts

subplot(2,1,2)

scatter(Age(Smoker==1),Diastolic(Smoker==1));
hold on

scatter (Age(Smoker==0),Diastolic(Smoker==0));
hold off

subplot(2,1,1)

grid on

title("Systolic Blood Pressure of Smokers vs Non-Smokers®)
subplot(2,1,2)

grid on

title("Diastolic Blood Pressure of Smokers vs Non-Smokers*®)

Systolic Blood Pressure of Smokers vs Non-

140 ¢ —
y O : C
o 8 & o @ :
13{'-‘: :I N 8 U 3 : é ») g @ D
¥ 8 82, 0 60 5.0
o 8 .B8B°% ,90°88,9 820 8¢
120 Fa) B ".- o o .-:: ."r "ﬁ: -:3 = B _. . £y -:--' 0
i o] = T oYY _ oA oA B
T L el [b - b
110 o o
1W 1 1 Il 1 1
25 30 35 40 45 50
Diastolic Blood Pressure of Smokers vs Non-Smokers
100
o O 8] o) £
1 o0 o B O
o0 O o =2 o= o 85 .. D
o] o 00 ; =0
Fi*] o Yy ’--' = & 3 a E-} S Y o - ﬁ 53
L S o B v COn "R o e
H ,;:] .'__ ::, [';} :'_'.\, s .;;. W L ':_:" -";. ‘_:u
70t - = o
60 L ; H | |
25 30 a5 40 45 50

Save and Print Figure

At any point during figure modification, you can choose to save or print the figure for
future use.

19-31

19 Live Scripts

19-32

1

Click the) icon in the upper-right corner of the output. This opens the figure in a
separate figure window.

2 a To save the figure — Select File > Save As. For more information on saving
figures, see “Save Figure to Open in Another Application” or “Save Figure to
Reopen in MATLAB Later”.

b To print the figure — Select File > Print. For more information on printing
figures, see “Print Figure from File Menu”.

Note: Any changes made to the figure in the separate figure window are not reflected

in the live script. Similarly, any changes made to the figure in the live script are not
reflected in the open figure window.

Related Examples

. “Run Sections in Live Scripts” on page 19-16
. “Create Live Scripts” on page 19-8

. “Share Live Scripts” on page 19-45

Insert Equations into Live Scripts

Insert Equations into Live Scripts

To describe a mathematical process or method used in your code, insert equations into
your live script. Only text lines can contain equations. If you insert an equation into a

code line, MATLAB places the equation into a new text line directly under the selected
code line.

Solar Elevation EI :

The sun's declination (&) is the angle of the sun relative to the earth's equitorial plane. The solar declination is 0° atthe

vernal and autumnal equinox and rises to a maximum 0723.45° at the summer soltice. On any given day of the year (d),
declination can be calculated from the following formula

& = sin”" (5in(23.45) sin (

360 4 _ g1
= ld-81)))

From the declination (&) and the latitude (¢) we can calculate the sun's elevation (@) at the current time.
« = sin”! (sin & sin ¢ + cos & cos @ cos w)

Here w is the hour angle which is the degrees of rotation of the earth between the current solar time and solar noon.

delta = asind(sind(23._45)*sind(360*(d - 81)/365)); % Declination

omega = 15*(solarTime Hour + solarTime Minute/60 - 12); % Hour angle

alpha = asind(sind(delta)*sind(phi) + ... % Elevation
cosd(delta)*cosd(phi)*cosd(omega));

fprintf('Solar Declination = %6.2f\nSolar Elevation = %6.2f\n', delta, alpha)

There are two ways to insert an equation into a live script.

* Insert an equation interactively — You can build an equation interactively by
selecting from a graphical display of symbols and structures.

+ Insert a LaTeX equation — You can enter LaTeX commands and the Live Editor
inserts the corresponding equation.

Insert Equation Interactively
To insert an equation interactively:
1 Go to the Live Editor tab and in the Insert section, click & Equation.

A blank equation appears.

19-33

19 e Scripts

19-34

Untitled.mlx * +

[Enter your equation.

Build your equation by selecting symbols, structures, and matrices from the options
displayed in the Equation tab. View additional options by clicking the = to the right
of each section.

When adding or editing a matrix, a context menu appears, which you can use to
delete and insert rows and columns.

Format your equation using the options available in the Format section. Formatting
is only available for text within the equation. Numbers and symbols cannot be
formatted. The formatting option is disabled unless the cursor is placed within text
that can be formatted.

Keyboard Shortcuts for Equation Editing

The equation editor provides a few shortcuts for adding elements to your equation:

To insert symbols, structures, and matrices, type a backslash followed by the name of
the symbol. For example, type \pi to insert a it symbol into the equation. To discover

the name of a symbol or structure, hover over the corresponding icon in the Equation
tab. You can also type backslash in the equation editor to bring up a completion menu
of all supported names.

Insert Equations into Live Scripts

aleph

alpha

amalg

angle

anglebracket

approx

ast

asymp -

Note: Although the \name syntax closely resembles LaTeX command syntax, entering
full LaTeX expressions is not supported when inserting equations interactively.

To insert subscripts, superscripts, and fractions, use the symbols ‘ ’, “~ or °/’. For
example:

Type X_2 to insert x5 into the equation.

Type X2 to insert x2 into the equation.

Type X/2 to insert % into the equation.

To insert a new column into a matrix, type a ‘, at the end of the last cell in a matrix
row. To insert a new row, type a semicolon ;" at the end of the last cell in a matrix
column.

To insert the common symbols listed in this table, type a combination of other
symbols.

Keyboard | Symbol Keyboard | Symbol Keyboard | Symbol
Input Input Input

[] l => = I= #

|= E <> — 1< <

19-35

19 Live Scripts

Keyboard | Symbol Keyboard | Symbol Keyboard | Symbol
Input Input Input

|- [<> ~ > *

- — <= < I<= &

> - >= > I>= 3

< — < +

<-- — ~= ==

Insert LaTeX Equation

To insert a LaTeX equation:

1 Go to the Live Editor tab and in the Insert section, click Equation= and select
LaTeX Equation.

2 Enter a LaTeX expression in the dialog box that appears. For example, you can enter
\sin(xX) = \sum_{n=0}"{\infty}{\frac{(-1)"n x {2n+1}}{(2n+1)1}}.

The preview pane shows a preview of equation as it would appear in the live script.

Edit Equation

Enter LaTexX equation code

sin(x) = ‘\sum_{n=0}"{infty}{\frac{(-1)"n x*{
2n+114(2n+1)1}

Preview

sinix) = ¥ %

(=1

OK Cancel Help

19-36

Insert Equations into Live Scripts

3 Press OK to insert the equation into your live script.

LaTeX expressions describe a wide range of equations. This table shows several examples
of LaTeX expressions and their appearance when inserted into a live script.

LaTeX Expression

Equation in Live Script

an2 + b"2 = c"2

a® +b2 =2

\int_{0} {2} x*2\sin(x) dx

%
-[0 x2 sin(x)dx

xM2n+1}H{(2n+1) 13}

\sin(x) = \sum_{n=0}*{\infty}{\frac{(-1)"n

. €2 (_1)nx2n+1
S = X oD

{a,b,c} \neq \{a,b,c\}

a,b,c #{a,b,c}

\mathbf{R}

x™M2} \geq O\gquad \text{for all}x\in

x2>0 forallxe R

\matrix{a & b \cr c & d}

a b
c d

Supported LaTeX Commands

MATLAB supports most standard LaTeX math mode commands. These tables show a list

of supported LaTeX commands.

Greek/Hebrew Letters

Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command

a alpha % nu 14 X1

B beta ® omega ¢ zeta

X chi 0 omicron € varepsilon

) delta [0} phi [0) varphi

e epsilon ot pi w varpi

n eta W psi 0 varrho

v gamma o rho g varsigma

19-37

19 Live Scripts

19-38

Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command

1 iota o sigma o) vartheta

K kappa T tau N aleph
lambda 0 theta

n mu U upsilon

A Delta)] Phi ¢ Theta

r Gamma II Pi T Upsilon

A Lambda p Psi B Xi

Q Omega by Sigma

Operator Symbols

Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command

* ast + pm N cap

PAY star ¥ mp U cup
cdot 11 amalg W uplus

) circ o odot M sgcap
bullet) ominus U sqgcup

o diamond e oplus A wedge, land
setminus (%) oslash Vv vee, lor

X times ® otimes < triangleleft

% div T dagger > triangleright

1 bot, perp I ddagger A bigtriangleup

T top 1 wr o bigtriangledown

3 sum 1 prod) int, intop
biguplus ® bigoplus \V bigvee

e bigcap ® bigotimes A bigwedge

Insert Equations into Live Scripts

Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command

@) bigcup ©) bigodot bigsqcup

Relation Symbols

Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command

= equiv < It > gt

= cong < le, leqg > ge, geq

% neq, ne, not= |¢ not< * not>

~ sim < prec > succ

= simeq < preceq b succeq

= approx < 11 > ag

= asymp C subset D supset

= doteq Cc subseteq 2 supseteq

x propto C sgsubseteq |d sgsupseteq

F models | mid E in

X bowtie [parallel ¢ notin

= vdash = iff > ni, owns

— dashv

Note: The leq, geq, equiv, approx, cong, sim, simeq, models, ni, succ, succeq,
prec, preceq, parallel, subset, supset, subseteq, and supseteq commands can
be combined with the not command to create the negated version of the symbol. For

example, \not\leq creates the symbol .

Arrows

Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command

— leftarrow — rightarrow |1 uparrow

19-39

19 e Scripts

Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command
= Leftarrow = Rightarrow |1 Uparrow
— longleftarro| — longrightarr|| downarrow
= Longleftarro| = Longrightarr| | Downarrow
e hookleftarro| < hookrightarr| § updownarrow
— leftharpoond| — rightharpoon ¢ Updownarrow
— leftharpoonu — rightharpoon| < leftrightarrow
v swarrow 7 nearrow & Leftrightarropw
N nwarrow N searrow — longleftrightar
- mapsto — longmapsto |« LongleftrighFar
Brackets
Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command
{ Ibrace } rbrace | vert
[Ibrack] rbrack I Vert
(langle) rangle \ backslash
[Iceil] rceil
L I1floor | rfloor
Sample LaTeX Sample LaTeX
Command Command
{ bfg,bigl, {abc} brace
bigr, bigm
{ Big, Bigl, [abe] brack
Bigr, Bigm
bigg, biggl, (abc) choose

biggr, biggm

19-40

Insert Equations into Live Scripts

Sample LaTeX Sample LaTeX
Command Command
Bigg, Biggl,

{ Biggr, Biggm

Misc Symbols

Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command

o0 infty v forall © wp

Y/ nabla 3 exists 4 angle

0 partial %) emptyset A triangle

3 Im 1 i h hbar

R Re] J ! prime

£ ell I imath - Inot, neg
dots, ldots | Jmath A surd
cdots colon — gets
ddots cdotp — to
vdots ldotp

Note: The exists command can be combined with the not command to create the

negated version of the symbol. For example, \not\exists creates the symbol 7.

Accents
Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command
a acute a ddot & tilde
a bar a dot 7 vec

1941

19 Live Scripts

19-42

1
S| Q
| I |

Symbol LaTeX Symbol LaTeX Symbol LaTeX
Command Command Command
a breve a grave
check & hat
a
Functions
Sample LaTeX Sample LaTeX Sample LaTeX
Command Command Command
arccos arccos det det In In
arcsin arcsin dim dim log log
arctan arctan exp exp max max
arg arg ged gcd min min
cos cos hom hom Pr Pr
cosh cosh ker ker sec sec
cot cot lg Ig sin sin
coth coth lim Fim sinh sinh
csc csc lim inf lLiminf sup sup
deg deg limsup limsup tan tan
Math Constructs
Sample LaTeX Sample LaTeX Sample LaTeX
Command Command Command
abe frac - over - stackrel,
— - b overset
xyz b
Jabe sqrt overwithdeli|y underset

Insert Equations into Live Scripts

Sample LaTeX Sample LaTeX Sample LaTeX
Command Command Command
mod a bmod abe overleftarro| /, 4 pmatrix
c d
(moda) pmod abe overrightarr| , 4 matrix
d
abe widehat ube overleftrigh , begin{array}
d
abe widetilde b limits a0 begin{cases}
.[c d
a
left right ab hline
d

Note: To create a matrix using the matrix and pmatrix commands, use the & symbol to
separate columns, and \Cr to separate rows. For example, to create a 2—by—2 matrix, use

the expression \matrix{a & b \cr c & d}.

White Space
Sample LaTeX Sample LaTeX Sample LaTeX
Command Command Command

ah negthinspace| 43, mathord ab mathopen
ab thinspace aEb mathop ab mathclose
ab enspace a+b mathbin alb mathinner
a b quad a=b mathrel a b kern, mkern
a b qquad a,b mathpunct

19-43

19 e Scripts

Text Styling
Sample LaTeX Sample LaTeX Sample LaTeX
Command Command Command

5 displaystyle ABCDE text, ABCDE texttt
textnormal

T textstyle ABCDE bf, textbf, ABCDE textsT
mathbf

I scriptstyle | ABCDE it, textit, ABCDE cal, mathcal
mathit

z scriptscript) ABCDE rm, textrm, ABCDE hbox, mbox
mathrm

Related Examples
. “Create Live Scripts” on page 19-8
. “Share Live Scripts” on page 19-45

External Websites
. http://www.latex-project.org/

19-44

http://www.latex-project.org/

Share Live Scripts

Share Live Scripts

You can share live scripts with others for teaching or demonstration, or to provide
readable, external documentation of your code. You can share live scripts with other
MATLAB users, or as static PDF and HTML files for viewing outside of MATLAB.

This table shows the different ways to share live scripts.

If you want to ...

Instructions

Share your live script as an interactive
document.

Distribute the live script file (.mIx).
Recipients of the file can open and view the
file in MATLAB in the same state that you
last saved it in. This includes generated
output.

MATLAB supports live scripts in versions
R2016a and above. You can open live
scripts as code only files in MATLAB
versions R2014b, R2015a, and R2015b.

Cavution: Saving a live script in MATLAB
versions R2014b, R2015a, and R2015b
causes all formatted text, images,
hyperlinks, equations, and generated
output content to be lost.

Share your live script with users of
previous MATLAB versions.

Save the live script as a plain code file
(-m) and distribute it. Recipients of the file
can open and view the file in MATLAB.
MATLAB converts formatted content from
the live script to publish markup in the
new script.

For more information, see “Save Live Script
as Script” on page 19-6.

Share your live script as a static document
capable of being viewed outside of
MATLAB.

Export the script to a standard format.
Available formats include PDF and HTML.

To export your live script to one of these
formats, on the Live Editor tab, select

19-45

19 Live Scripts

19-46

If you want to ...

Instructions

Save > Export to PDF or Save > Export
to HTML.

The saved file closely resembles the
appearance of your live script when viewed
in the Editor with output inline.

Related Examples
. “Create Live Scripts” on page 19-8
. “What Is a Live Script?” on page 19-2

Live Script File Format (.mlx)

Live Script File Format (.mlx)

MATLAB stored live scripts using the Live Script file format in a file with a .mlIx
extension. The Live Script file format uses Open Packaging Conventions technology,
which is an extension of the zip file format. Code and formatted content are stored in
an XML document separate from the output using the Office Open XML (ECMA-376)
format.

Benefits of Live Script File Format

+ Interoperable Across Locales — Live script files support storing and displaying
characters across all locales, facilitating sharing files internationally. For example, if
you create a live script with a Japanese locale setting, and open the live script with a
Russian locale setting, the characters in the live script display correctly.

+ Extensible — Live script files can be extended through the ECMA-376 format, which
supports the range of formatting options offered by Microsoft Word. The ECMA-376
format also accommodates arbitrary name-value pairs, should there be a need to
extend the format beyond what the standard offers.

+ Forward Compatible — Future versions of live script files are compatible with
previous versions of MATLAB by implementing the ECMA-376 standard's forward
compatibility strategy.

+ Backward Compatible — Future versions of MATLAB can support live script files
created by a previous version of MATLAB.
Source Control

To determine and display code differences between live scripts, use the MATLAB
Comparison Tool.

If you use source control, register the .mIX extension as binary. For more information,
see “Register Binary Files with SVN” on page 31-18 or “Register Binary Files with
Git” on page 31-32.

Related Examples
. “Create Live Scripts” on page 19-8

More About
. “What Is a Live Script?” on page 19-2

19-47

19 e Scripts

External Websites
Open Packaging Conventions Fundamentals
Office Open XML File Formats (ECMA-376)

19-48

https://msdn.microsoft.com/en-us/library/windows/desktop/dd742818(v=vs.85).aspx
http://www.ecma-international.org/publications/standards/Ecma-376.htm

Function Basics

“Create Functions in Files” on page 20-2

“Add Help for Your Program” on page 20-6

“Run Functions in the Editor” on page 20-8
“Base and Function Workspaces” on page 20-10
“Share Data Between Workspaces” on page 20-11
“Check Variable Scope in Editor” on page 20-16
“Types of Functions” on page 20-20

“Anonymous Functions” on page 20-24

“Local Functions” on page 20-30

“Nested Functions” on page 20-32

“Variables in Nested and Anonymous Functions” on page 20-39
“Private Functions” on page 20-41

“Function Precedence Order” on page 20-43

20 Function Basics

Create Functions in Files

20-2

Both scripts and functions allow you to reuse sequences of commands by storing them

in program files. Scripts are the simplest type of program, since they store commands
exactly as you would type them at the command line. Functions provide more flexibility,
primarily because you can pass input values and return output values. For example, this
function named fact computes the factorial of a number (n) and returns the result (F).

function £ = fact(n)
f = prod(1:n);
end

This type of function must be defined within a file, not at the command line. Often, you
store a function in its own file. In that case, the best practice is to use the same name

for the function and the file (in this example, Fact.m), since MATLAB associates the
program with the file name. Save the file either in the current folder or in a folder on the
MATLAB search path.

You can call the function from the command line, using the same syntax rules that apply
to functions installed with MATLAB. For instances, calculate the factorial of 5.

5-

X 5
fact(b)

y

y

120

Starting in R2016b, another option for storing functions is to include them at the end of
a script file. For instance, create a file named mystats.m with a few commands and two
functions, Fact and perm. The script calculates the permutation of (3,2).

X = 3;
y = 2;
z = perm(X,Y)

function p = perm(n,r)
p = fact(n)*fact(n-r);
end

function ¥ = fact(n)
f = prod(1:n);

Create Functions in Files

end

Call the script from the command line.

mystats

Z =

Syntax for Function Definition

The first line of every function is the definition statement, which includes the following

elements.

function keyword
(required)

Use lowercase characters for the keyword.

Output arguments
(optional)

If your function returns one output, you can specify the
output name after the function keyword.

function myOutput = myFunction(x)

If your function returns more than one output, enclose the
output names in square brackets.

function [one,two,three] = myFunction(x)
If there is no output, you can omit it.

function myFunction(x)

Or you can use empty square brackets.

function [] = myFunction(x)

Function name (required)

Valid function names follow the same rules as variable
names. They must start with a letter, and can contain letters,
digits, or underscores.

Note: To avoid confusion, use the same name for both the
function file and the first function within the file. MATLAB
associates your program with the file name, not the function

20-3

20 Function Basics

20-4

name. Script files cannot have the same name as a function

in the file.
Input arguments If your function accepts any inputs, enclose their names in
(optional) parentheses after the function name. Separate inputs with
commas.

function y = myFunction(one,two,three)

If there are no inputs, you can omit the parentheses.

Tip: When you define a function with multiple input or output arguments, list any
required arguments first. This ordering allows you to call your function without
specifying optional arguments.

Contents of Functions and Files

The body of a function can include valid MATLAB expressions, control flow statements,
comments, blank lines, and nested functions. Any variables that you create within a
function are stored within a workspace specific to that function, which is separate from
the base workspace.

Program files can contain multiple functions. If the file contains only function definitions,
the first function is the main function, and is the function that MATLAB associates with
the file name. Functions that follow the main function or script code are called local
functions. Local functions are only available within the file.

End Statements

Functions end with either an end statement, the end of the file, or the definition line for
a local function, whichever comes first. The end statement is required if:

+ Any function in the file contains a nested function (a function completely contained
within its parent).

* The function is a local function within a function file, and any local function in the file
uses the end keyword.

* The function is a local function within a script file.

Although it is sometimes optional, use end for better code readability.

Create Functions in Files

See Also

function

More About
. “Files and Folders that MATLAB Accesses”

. “Base and Function Workspaces” on page 20-10
. “Types of Functions” on page 20-20

. “Add Functions to Scripts” on page 18-18

20-5

20 Function Basics

Add Help for Your Program

20-6

This example shows how to provide help for the programs you write. Help text appears in
the Command Window when you use the help function.

Create help text by inserting comments at the beginning of your program. If your
program includes a function, position the help text immediately below the function
definition line (the line with the function keyword).

For example, create a function in a file named addme .m that includes help text:

function ¢ = addme(a,b)

% ADDME Add two values together.

% C = ADDME(A) adds A to itself.

% C = ADDME(A,B) adds A and B together.
%

% See also SUM, PLUS.

switch nargin

case 2

c =a+ b;
case 1

c =a+ a;
otherwise

c = 0;

end

When you type help addme at the command line, the help text displays in the
Command Window:

addme Add two values together.
C = addme(A) adds A to itself.
C = addme(A,B) adds A and B together.

See also sum, plus.

The first help text line, often called the H1 line, typically includes the program name and
a brief description. The Current Folder browser and the help and lookfor functions use
the H1 line to display information about the program.

Create See also links by including function names at the end of your help text on a line
that begins with % See also. If the function exists on the search path or in the current

Add Help for Your Program

folder, the help command displays each of these function names as a hyperlink to its
help. Otherwise, help prints the function names as they appear in the help text.

You can include hyperlinks (in the form of URLs) to Web sites in your help text. Create
hyperlinks by including an HTML <a> anchor element. Within the anchor, use a
matlab: statement to execute a web command. For example:

% For more information, see <a href="matlab:
% web("http://www.mathworks.com®)">the MathWorks Web site.

End your help text with a blank line (without a %). The help system ignores any comment
lines that appear after the help text block.

Note: When multiple programs have the same name, the help command determines
which help text to display by applying the rules described in “Function Precedence
Order” on page 20-43. However, if a program has the same name as a MathWorks
function, the Help on Selection option in context menus always displays documentation
for the MathWorks function.

See Also
help | lookfor

Related Examples

. “Add Comments to Programs” on page 18-4

. “Create Help Summary Files — Contents.m” on page 30-12
. “Check Which Programs Have Help” on page 30-9

. “Display Custom Documentation” on page 30-15

. “Use Help Files with MEX Files”

20-7

20 Function Basics

Run Functions in the Editor

20-8

This example shows how to run a function that requires some initial setup, such as input
argument values, while working in the Editor.

1

Create a function in a program file named myfunction.m.

function y = myfunction(x)
y = X."2 + X;

This function requires input X.

View the commands available for running the function by clicking Run on the
Editor tab. The command at the top of the list is the command that the Editor uses
by default when you click the Run icon.

Run: myfunction

Rur: type code to run

Replace the text type code to run with an expression that allows you to run the
function.

y = myfunction(1:10)
You can enter multiple commands on the same line, such as
X = 1:10; y = myfunction(x)

For more complicated, multiline commands, create a separate script file, and then
run the script.

Note: Run commands use the base workspace. Any variables that you define in a run
command can overwrite variables in the base workspace that have the same name.

Run Functions in the Editor

4 Run the function by clicking Run or a specific run command from the drop-down
list. For myfunction.m, and an input of 1:10, this result appears in the Command
Window:

y:
2 6 12 20 30 42 56 72 90 110

When you select a run command from the list, it becomes the default for the Run
button.

To edit or delete an existing run command, select the command, right-click, and then
select Edit or Delete.

20-9

20 Function Basics

Base and Function Workspaces

This topic explains the differences between the base workspace and function workspaces,
including workspaces for local functions, nested functions, and scripts.

The base workspace stores variables that you create at the command line. This includes
any variables that scripts create, assuming that you run the script from the command
line or from the Editor. Variables in the base workspace exist until you clear them or end
your MATLAB session.

Functions do not use the base workspace. Every function has its own function workspace.
Each function workspace is separate from the base workspace and all other workspaces
to protect the integrity of the data. Even local functions in a common file have their

own workspaces. Variables specific to a function workspace are called local variables.
Typically, local variables do not remain in memory from one function call to the next.

When you call a script from a function, the script uses the function workspace.

Like local functions, nested functions have their own workspaces. However, these
workspaces are unique in two significant ways:

+ Nested functions can access and modify variables in the workspaces of the functions
that contain them.

+ All of the variables in nested functions or the functions that contain them must be
explicitly defined. That is, you cannot call a function or script that assigns values to
variables unless those variables already exist in the function workspace.

Related Examples
. “Share Data Between Workspaces” on page 20-11

More About

. “Nested Functions” on page 20-32

20-10

Share Data Between Workspaces

Share Data Between Workspaces

In this section...

“Introduction” on page 20-11

“Best Practice: Passing Arguments” on page 20-11
“Nested Functions” on page 20-12

“Persistent Variables” on page 20-12

“Global Variables” on page 20-13

“Evaluating in Another Workspace” on page 20-14

Introduction

This topic shows how to share variables between workspaces or allow them to persist
between function executions.

In most cases, variables created within a function are local variables known only
within that function. Local variables are not available at the command line or to any
other function. However, there are several ways to share data between functions or
workspaces.

Best Practice: Passing Arguments

The most secure way to extend the scope of a function variable is to use function input
and output arguments, which allow you to pass values of variables.

For example, create two functions, updatel and update2, that share and modify an
input value. update2 can be a local function in the file updatel.m, or can be a function
in its own file, update2.m.

function yl = updatel(xl)
yl = 1 + update2(x1);

function y2 = update2(x2)
y2 = 2 * X2;

Call the updatel function from the command line and assign to variable Y in the base
workspace:

X =11,2,3];

20-11

20 Function Basics

<
1

updatel(X)

Nested Functions

A nested function has access to the workspaces of all functions in which it is nested. So,
for example, a nested function can use a variable (in this case, X) that is defined in its
parent function:

function primaryFx
X = 1;
nestedFx

function nestedFx
X =X + 1;
end
end

When parent functions do not use a given variable, the variable remains local to the
nested function. For example, in this version of primaryFx, the two nested functions
have their own versions of X that cannot interact with each other.

function primaryFx
nestedFx1
nestedFx2

function nestedFx1
X = 1;
end
function nestedFx2
X = 2;
end
end

For more information, see “Nested Functions” on page 20-32.

Persistent Variables

When you declare a variable within a function as persistent, the variable retains its
value from one function call to the next. Other local variables retain their value only

20-12

Share Data Between Workspaces

during the current execution of a function. Persistent variables are equivalent to static
variables in other programming languages.

Declare variables using the persistent keyword before you use them. MATLAB
initializes persistent variables to an empty matrix, [].

For example, define a function in a file named FindSum.m that initializes a sum to O,
and then adds to the value on each iteration.

function FindSum(inputvalue)
persistent SUM_X

it isempty(SUM_X)
SUM_X = 03
end
SUM_X = SUM_X + inputvalue;

When you call the function, the value of SUM_X persists between subsequent executions.
These operations clear the persistent variables for a function:

+ clear all
+ clear functionname
+ Editing the function file

To prevent clearing persistent variables, lock the function file using mlock.

Global Variables

Global variables are variables that you can access from functions or from the command
line. They have their own workspace, which is separate from the base and function
workspaces.

However, global variables carry notable risks. For example:

+ Any function can access and update a global variable. Other functions that use the
variable might return unexpected results.

+ If you unintentionally give a “new” global variable the same name as an existing
global variable, one function can overwrite the values expected by another. This error
is difficult to diagnose.

Use global variables sparingly, if at all.

20-13

20 Function Basics

20-14

If you use global variables, declare them using the global keyword before you access
them within any particular location (function or command line). For example, create a
function in a file called falling.m:

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t."2;

Then, enter these commands at the prompt:

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)");

The two global statements make the value assigned to GRAVITY at the command prompt
available inside the function. However, as a more robust alternative, redefine the
function to accept the value as an input:

function h = falling(t,gravity)
h = 1/2*gravity*t."2;

Then, enter these commands at the prompt:

GRAVITY = 32;
y = falling((0:.1:5)",GRAVITY);

Evaluating in Another Workspace

The evalin and assignin functions allow you to evaluate commands or variable names
from character vectors and specify whether to use the current or base workspace.

Like global variables, these functions carry risks of overwriting existing data. Use them
sparingly.

evalin and assignin are sometimes useful for callback functions in graphical user
interfaces to evaluate against the base workspace. For example, create a list box of
variable names from the base workspace:

function listBox

figure

Ib = uicontrol("Style”,"listbox","Position”,[10 10 100 100],---
"Callback®,@update_listBox);

update_listBox(lb)

Share Data Between Workspaces

function update_listBox(src,~)
vars = evalin("base”,"who");
src.String = vars;

For other programming applications, consider argument passing and the techniques
described in “Alternatives to the eval Function” on page 2-83.

More About

. “Base and Function Workspaces” on page 20-10

20-15

20 Function Basics

Check Variable Scope in Editor

20-16

In this section...

“Use Automatic Function and Variable Highlighting” on page 20-16

“Example of Using Automatic Function and Variable Highlighting” on page 20-17

Scoping issues can be the source of some coding problems. For instance, if you are
unaware that nested functions share a particular variable, the results of running your
code might not be as you expect. Similarly, mistakes in usage of local, global, and
persistent variables can cause unexpected results.

The Code Analyzer does not always indicate scoping issues because sharing a variable
across functions is not an error—it may be your intent. Use MATLAB function and
variable highlighting features to identify when and where your code uses functions and
variables. If you have an active Internet connection, you can watch the Variable and
Function Highlighting video for an overview of the major features.

For conceptual information on nested functions and the various types of MATLAB
variables, see “Sharing Variables Between Parent and Nested Functions” on page
20-33 and “Share Data Between Workspaces” on page 20-11.

Use Automatic Function and Variable Highlighting

By default, the Editor indicates functions, local variables, and variables with shared
scope in various shades of blue. Variables with shared scope include: global variables on
page 20-13, persistent variables on page 20-12, and variables within nested functions.
(For more information, see “Nested Functions” on page 20-12.)

To enable and disable highlighting or to change the colors, click @ Preferences and
select MATLAB > Colors > Programming tools.
By default, the Editor:

* Highlights all instances of a given function or local variable in sky blue when you
place the cursor within a function or variable name. For instance:
collatz

+ Displays a variable with shared scope in teal blue, regardless of the cursor location.
For instance:

http://www.mathworks.com/videos/variable-and-subfunction-highlighting-in-r2010b-101555.html
http://www.mathworks.com/videos/variable-and-subfunction-highlighting-in-r2010b-101555.html

Check Variable Scope in Editor

Example of Using Automatic Function and Variable Highlighting

Consider the code for a function rowsum:

function rowTotals = rowsum
% Add the values in each row and
% store them iIn a new array

X = ones(2,10);
[n, m] = size(X);
rowTotals = zeros(l1,n);
for i = 1:n
rowTotals(i) = addToSum;

end
function colsum = addToSum
colsum = 0;
thisrow = x(i,:);
for 1 = 1:m
colsum = colsum + thisrow(i);
end
end
end

When you run this code, instead of returning the sum of the values in each row and

displaying:
ans =
10 10
MATLAB displays:
ans =
0 0 0 0 0 0

Examine the code by following these steps:

10

20-17

20 Function Basics

20-18

On the Home tab in the Environment section, click @ Preferences and select
MATLAB > Colors > Programming tools. Ensure that Automatically highlight
and Variables with shared scope are selected.

Copy the rowsum code into the Editor.
Notice the variable 1 appears in teal blue, which indicates i is not a local variable.

Both the rowTotals function and the addToSum functions set and use the variable
i.

The variable n, at line 6 appears in black, indicating that it does not span multiple
functions.

1 funetion rowTotals = rowsum ,D
2 % Add the values in each row and]
3 % store them in a new array

4

E|= x = ones(2,10);

6 — [n, m] = size(x);

7= rowlotals = zeros(l,n):

& - for i = 1:n

o= rowTotals (1) = addToSum;

10 — end 2
11 1
12 function colsum = addToSum

13 = colsum = 0;

14 — thisrow = x(i,:);

15 = for 1 = 1:m

18 — colsum = colsum + thisrow(i):

17 — end

18 — end

19

20 — end k%

Hover the mouse pointer over an instance of variable i.

A tooltip appears: The scope of variable ' spans multiple functions.

Click the tooltip link for information about variables whose scope span multiple
functions.

Click an instance of 1.

Every reference to i highlights in sky blue and markers appear in the indicator bar
on the right side of the Editor.

Check Variable Scope in Editor

1 function rowlotals = rowsum

2 .

3

4

El= ® = ones(2,10);

& — [n, m] = size(x):

7 - rowTotals = zeros(l,n);

8 — for i = 1:n

L= rowTotals (i) = addToSum;
10 — end

11

12 function colsum = addToSum
13} = colsum = O;

14 = thisrow = =x(i,:);

15 — for l]. = 1l:im

18 — colsum = colsum + thisrow(i):
17 - end

18 — end

13

20 - end

6 Hover over one of the indicator bar markers.

A tooltip appears and displays the name of the function or variable and the line of

code represented by the marker.

7 Click a marker to navigate to the line indicated in tooltip for that marker.

This is particularly useful when your file contains more code than you can view at

one time in the Editor.

Fix the code by changing the instance of i at line 15 to y.

You can see similar highlighting effects when you click on a function reference. For

instance, click on addToSum.

20-19

20 Function Basics

Types of Functions

20-20

In this section...

“Local and Nested Functions in a File” on page 20-20

“Private Functions in a Subfolder” on page 20-21

“Anonymous Functions Without a File” on page 20-21

Local and Nested Functions in a File

Program files can contain multiple functions. Local and nested functions are useful for
dividing programs into smaller tasks, making it easier to read and maintain your code.

Local functions are subroutines that are available within the same file. Local functions
are the most common way to break up programmatic tasks. In a function file, which
contains only function definitions, local functions can appear in the file in any order
after the main function in the file. In a script file, which contains commands and
function definitions, local function must be at the end of the file. (Functions in scripts are
supported in R2016b or later.)

For example, create a function file named myfunction.m that contains a main function,
myfunction, and two local functions, squareMe and doubleMe:

function b = myfunction(a)
b = squareMe(a)+doubleMe(a);
end
function y = squareMe(x)
y = X."2;
end
function y = doubleMe(X)
y = X.*2;
end

You can call the main function from the command line or another program file, although
the local functions are only available to myfunction:

myfunction(pi)

ans =
16.1528

Nested functions are completely contained within another function. The primary
difference between nested functions and local functions is that nested functions can

Types of Functions

use variables defined in parent functions without explicitly passing those variables as
arguments.

Nested functions are useful when subroutines share data, such as applications that pass
data between components. For example, create a function that allows you to set a value
between 0 and 1 using either a slider or an editable text box. If you use nested functions
for the callbacks, the slider and text box can share the value and each other’s handles
without explicitly passing them:

function myslider

value = 0;
f = figure;
s = uicontrol (F,"Style”, "slider”, "Callback”,@slider);
e = uicontrol(f, "Style”,"edit", "Callback”,@edittext, ...
"Position”,[100,20,100,201);
function slider(obj,~)
value = obj.Value;
e.String = num2str(value);
end
function edittext(obj,~)
value = str2double(obj.String);
s.Value = value;
end
end

Private Functions in a Subfolder

Like local or nested functions, private functions are accessible only to functions in a
specific location. However, private functions are not in the same file as the functions
that can call them. Instead, they are in a subfolder named private. Private functions
are available only to functions in the folder immediately above the private folder. Use
private functions to separate code into different files, or to share code between multiple,
related functions.

Anonymous Functions Without a File
Anonymous functions allow you to define a function without creating a program file, as

long as the function consists of a single statement. A common application of anonymous
functions is to define a mathematical expression, and then evaluate that expression over

20-21

20 Function Basics

a range of values using a MATLAB® function function, i.e., a function that accepts a
function handle as an input.

For example, this statement creates a function handle named s for an anonymous
function:

s = @(X) sin(1./x);
This function has a single input, x . The @ operator creates the function handle.

You can use the function handle to evaluate the function for particular values, such as

s(pi)

0.3130

y

y

Or, you can pass the function handle to a function that evaluates over a range of values,
such as fplot:

range = [0.01,0.1];
fplot(s,range)

20-22

Types of Functions

0.8

0.6

0.4

0.2

0

0.2

04

0.6

0.8

-1

0.01

002 003 004 005 006 007 008

More About

“Local Functions” on page 20-30
“Nested Functions” on page 20-32
“Private Functions” on page 20-41

“Anonymous Functions” on page 20-24

0.09

01

20-23

20 Function Basics

Anonymous Functions

20-24

In this section...

“What Are Anonymous Functions?” on page 20-24
“Variables in the Expression” on page 20-25

“Multiple Anonymous Functions” on page 20-26
“Functions with No Inputs” on page 20-27

“Functions with Multiple Inputs or Outputs” on page 20-27

“Arrays of Anonymous Functions” on page 20-28

What Are Anonymous Functions?

An anonymous function is a function that is not stored in a program file, but is associated
with a variable whose data type is function_handle. Anonymous functions can accept
inputs and return outputs, just as standard functions do. However, they can contain only
a single executable statement.

For example, create a handle to an anonymous function that finds the square of a
number:

sgr = @(x) x."2;
Variable sqr is a function handle. The @ operator creates the handle, and the
parentheses () immediately after the @ operator include the function input arguments.

This anonymous function accepts a single input X, and implicitly returns a single output,
an array the same size as X that contains the squared values.

Find the square of a particular value (5) by passing the value to the function handle, just
as you would pass an input argument to a standard function.

sqr(5)

a

a =
25

Many MATLAB functions accept function handles as inputs so that you can evaluate
functions over a range of values. You can create handles either for anonymous functions
or for functions in program files. The benefit of using anonymous functions is that you do
not have to edit and maintain a file for a function that requires only a brief definition.

Anonymous Functions

For example, find the integral of the sqr function from O to 1 by passing the function
handle to the integral function:

q = integral(sqr,0,1);

You do not need to create a variable in the workspace to store an anonymous function.
Instead, you can create a temporary function handle within an expression, such as this
call to the integral function:

q = integral(@(x) x.72,0,1);

Variables in the Expression

Function handles can store not only an expression, but also variables that the expression
requires for evaluation.

For example, create a function handle to an anonymous function that requires
coefficients a, b, and c.

a=1.3;
b= .2;
c = 30;

parabola = @(x) a*x."2 + b*x + c;

Because a, b, and c are available at the time you create parabola, the function handle
includes those values. The values persist within the function handle even if you clear the
variables:

clear a b c

X = 1;
y = parabola(x)
y =

31.5000

To supply different values for the coefficients, you must create a new function handle:

a = -3.9;
b = 52;
c = 0;

parabola = @(x) a*x."2 + b*x + c;

1-

X ;
parabola(l)

y

20-25

20 Function Basics

20-26

y =
48.1000

You can save function handles and their associated values in a MAT-file and load them in
a subsequent MATLAB session using the save and load functions, such as

save myfile.mat parabola

Use only explicit variables when constructing anonymous functions. If an anonymous
function accesses any variable or nested function that is not explicitly referenced in the
argument list or body, MATLAB throws an error when you invoke the function. Implicit
variables and function calls are often encountered in the functions such as eval, evalin,
assignin, and load. Avoid using these functions in the body of anonymous functions.

Multiple Anonymous Functions

The expression in an anonymous function can include another anonymous function. This
is useful for passing different parameters to a function that you are evaluating over a

range of values. For example, you can solve the equation
1

gie) = Ji.l;2+c.1;+ 1idx
]

for varying values of ¢ by combining two anonymous functions:
g = @(c) (integral(@(x) (x-"2 + c*x + 1),0,1));

Here is how to derive this statement:

1 Write the integrand as an anonymous function,

@(x) (x-"2 + c*x + 1)

2 Evaluate the function from zero to one by passing the function handle to integral,

integral(@(x) (x-~2 + c*x + 1),0,1)

3 Supply the value for ¢ by constructing an anonymous function for the entire
equation,

g = 0(c) (integral(@(x) (x-"2 + c*x + 1),0,1));

The final function allows you to solve the equation for any value of c. For example:

Anonymous Functions

9(2

ans =
2.3333

Functions with No Inputs

If your function does not require any inputs, use empty parentheses when you define and
call the anonymous function. For example:

t = @) datestr(now);
d =tQ
d =

26-Jan-2012 15:11:47

Omitting the parentheses in the assignment statement creates another function handle,
and does not execute the function:

d=t
d =
@ datestr(now)

Functions with Multiple Inputs or Outputs

Anonymous functions require that you explicitly specify the input arguments as you
would for a standard function, separating multiple inputs with commas. For example,
this function accepts two inputs, X and y:

myfunction = @(X,y) (X2 + y"2 + x*y);

X = 1;

y = 10;

z = myfunction(x,y)
z = 111

However, you do not explicitly define output arguments when you create an anonymous
function. If the expression in the function returns multiple outputs, then you can request
them when you call the function. Enclose multiple output variables in square brackets.

For example, the ndgrid function can return as many outputs as the number of input
vectors. This anonymous function that calls ndgrid can also return multiple outputs:

20-27

20 Function Basics

c = 10;
mygrid = @(X,y) ndgrid((-x:x/c:x),(-y:y/c:y));
[x.y]l = mygrid(pi,2*pi);

You can use the output from mygrid to create a mesh or surface plot:

z = sin(x) + cos(y);
mesh(X,y,z)

Arrays of Anonymous Functions

Although most MATLAB fundamental data types support multidimensional arrays,
function handles must be scalars (single elements). However, you can store multiple

20-28

Anonymous Functions

function handles using a cell array or structure array. The most common approach is to
use a cell array, such as

T = {00)x."2;
0(y)y+10;
O(X,y)x."2+y+10};

When you create the cell array, keep in mind that MATLAB interprets spaces as column
separators. Either omit spaces from expressions, as shown in the previous code, or
enclose expressions in parentheses, such as

= {0 (x.72);
oy) (v + 10);
@(x,y) (X.”2 +y + 10)};

Access the contents of a cell using curly braces. For example, F{1} returns the first
function handle. To execute the function, pass input values in parentheses after the curly
braces:

X
y

{130
{23 (y)
{3} (x.y)

ans =
1

1;
10;

ans =
20

ans =
21

More About

. “Create Function Handle” on page 13-2

20-29

20 Function Basics

Local Functions

20-30

This topic explains the term local function, and shows how to create and use local
functions.

MATLAB program files can contain code for more than one function. In a function

file, the first function in the file is called the main function. This function is visible to
functions in other files, or you can call it from the command line. Additional functions
within the file are called local functions, and they can occur in any order after the main
function. Local functions are only visible to other functions in the same file. They are
equivalent to subroutines in other programming languages, and are sometimes called
subfunctions.

As of R2016b, you can also create local functions in a script file, as long as they all appear
after the last line of script code. For more information, see “Add Functions to Scripts” on
page 18-18.

For example, create a function file named mystats.m that contains a main function,
mystats, and two local functions, mymean and mymedian.

function [avg, med] = mystats(x)
n = length(x);

avg = mymean(x,n);

med mymedian(x,n);

end

function a = mymean(v,n)
% MYMEAN Example of a local function.

a = sum(v)/n;
end

function m = mymedian(v,n)
% MYMEDIAN Another example of a local function.

w = sort(v);
if rem(n,2) ==
m = w((n + 1)/2);
else
m = (w(n/2) + w(n/2 + 1))/2;
end
end

Local Functions

The local functions mymean and mymedian calculate the average and median of the input
list. The main function mystats determines the length of the list n and passes it to the
local functions.

Although you cannot call a local function from the command line or from functions in
other files, you can access its help using the help function. Specify names of both the file
and the local function, separating them with a > character:

help mystats>mymean

mymean Example of a local function.

Local functions in the current file have precedence over functions in other files. That is,
when you call a function within a program file, MATLAB checks whether the function
is a local function before looking for other main functions. Therefore, you can create an
alternate version of a particular function while retaining the original in another file.

All functions, including local functions, have their own workspaces that are separate
from the base workspace. Local functions cannot access variables used by other functions
unless you pass them as arguments. In contrast, nested functions (functions completely
contained within another function) can access variables used by the functions that
contain them.

See Also

localfunctions

More About
. “Nested Functions” on page 20-32

. “Function Precedence Order” on page 20-43

20-31

20 Function Basics

Nested Functions

20-32

In this section...
“What Are Nested Functions?” on page 20-32

“Requirements for Nested Functions” on page 20-32

“Sharing Variables Between Parent and Nested Functions” on page 20-33
“Using Handles to Store Function Parameters” on page 20-34

“Visibility of Nested Functions” on page 20-37

What Are Nested Functions?

A nested function is a function that is completely contained within a parent function. Any
function in a program file can include a nested function.

For example, this function named parent contains a nested function named nestedfx:

function parent
disp("This is the parent function®)
nestedfx

function nestedfx
disp("This is the nested function®)
end

end

The primary difference between nested functions and other types of functions is that they
can access and modify variables that are defined in their parent functions. As a result:

+ Nested functions can use variables that are not explicitly passed as input arguments.

* In a parent function, you can create a handle to a nested function that contains the
data necessary to run the nested function.

Requirements for Nested Functions

+ Typically, functions do not require an end statement. However, to nest any function
in a program file, all functions in that file must use an end statement.

Nested Functions

* You cannot define a nested function inside any of the MATLAB program control
statements, such as if/elseif/else, switch/case, for, while, or try/catch.

* You must call a nested function either directly by name (without using feval), or
using a function handle that you created using the @ operator (and not str2func).

+ All of the variables in nested functions or the functions that contain them must be
explicitly defined. That is, you cannot call a function or script that assigns values to
variables unless those variables already exist in the function workspace. (For more
information, see “Variables in Nested and Anonymous Functions” on page 20-39.)

Sharing Variables Between Parent and Nested Functions

In general, variables in one function workspace are not available to other functions.
However, nested functions can access and modify variables in the workspaces of the
functions that contain them.

This means that both a nested function and a function that contains it can modify the
same variable without passing that variable as an argument. For example, in each of
these functions, mainl and main2, both the main function and the nested function can
access variable X:

function mainl function main2
X = 5; nestfun2
nestfunl
function nestfun2
function nestfunl X = 5;
X = X + 1; end
end

end end

When parent functions do not use a given variable, the variable remains local to the
nested function. For example, in this function named main, the two nested functions
have their own versions of X that cannot interact with each other:

function main
nestedfunl
nestedfun2

function nestedfunl

20-33

20 Function Basics

20-34

function nestedfun2
X = 2;
end
end

Functions that return output arguments have variables for the outputs in their
workspace. However, parent functions only have variables for the output of nested
functions if they explicitly request them. For example, this function parentfun does not
have variable y in its workspace:

function parentfun
X = 5;
nestfun;
function y = nestfun
y =X + 1;
end

end

If you modify the code as follows, variable z is in the workspace of parentfun:
function parentfun
X = 5;
z = nestfun;
function y = nestfun
y = x + 1;
end

end

Using Handles to Store Function Parameters

Nested functions can use variables from three sources:

* Input arguments
+ Variables defined within the nested function

+ Variables defined in a parent function, also called externally scoped variables

Nested Functions

When you create a function handle for a nested function, that handle stores not only the
name of the function, but also the values of externally scoped variables.

For example, create a function in a file named makeParabola.m. This function accepts
several polynomial coefficients, and returns a handle to a nested function that calculates
the value of that polynomial.

function p = makeParabola(a,b,c)
p = @parabola;

function y = parabola(x)
y = a*x.~2 + b*x + c;
end

end

The makeParabola function returns a handle to the parabola function that includes
values for coefficients a, b, and c.

At the command line, call the makeParabola function with coefficient values of 1.3, .2,
and 30. Use the returned function handle p to evaluate the polynomial at a particular
point:

p = makeParabola(1.3,.2,30);
X = 25;
Y = p(X)
Y =
847 .5000

Many MATLAB functions accept function handle inputs to evaluate functions over a
range of values. For example, plot the parabolic equation from -25 to +25:

fplot(p,[-25,25])

20-35

20 Function Basics

900 . : : . : : : : .

80O P\ -
700 \ |
600F O\ /]
500 | \ / .

o /

300 / i

I
o
1

200

T
A

100 g]

=25 =20 -15 -10 -5 0 5 10 15 20 25

You can create multiple handles to the parabola function that each use different
polynomial coefficients:

firstp = makeParabola(0.8,1.6,32);
secondp = makeParabola(3,4,50);
range = [-25,25];

figure

hold on
fplot(firstp,range)
fplot(secondp,range, "r:")
hold off

20-36

Nested Functions

2500

2000

1500

1000

500 f_ e

Visibility of Nested Functions

Every function has a certain scope, that is, a set of other functions to which it is visible. A
nested function is available:

From the level immediately above it. (In the following code, function A can call B or D,
but not C or E.)

From a function nested at the same level within the same parent function. (Function
B can call D, and D can call B.)

+ From a function at any lower level. (Function C can call B or D, but not E.)

function A(X, Y) % Main function

20-37

20 Function Basics

20-38

B(X,y)
DY)

function B(X,Y)
CC)
DY)

function C(x)
D(x)
end

end

X

» Nested in A

X

» Nested in B

function D(X)
ECO

function E(X)
disp(x)
end
end
end

X

» Nested in A

X

» Nested in D

The easiest way to extend the scope of a nested function is to create a function handle
and return it as an output argument, as shown in “Using Handles to Store Function
Parameters” on page 20-34. Only functions that can call a nested function can create
a handle to it.

More About

. “Variables in Nested and Anonymous Functions” on page 20-39
. “Create Function Handle” on page 13-2
. “Argument Checking in Nested Functions” on page 21-11

Variables in Nested and Anonymous Functions

Variables in Nested and Anonymous Functions

The scoping rules for nested and anonymous functions require that all variables used
within the function be present in the text of the code.

If you attempt to dynamically add a variable to the workspace of an anonymous function,
a nested function, or a function that contains a nested function, then MATLAB issues an
error of the form

Attempt to add variable to a static workspace.

This table describes typical operations that attempt dynamic assignment, and the
recommended ways to avoid it.

Type of Operation Best Practice to Avoid Dynamic Assignment

load Specify the variable name as an input to the
load function. Or, assign the output from the
load function to a structure array.

eval, evalin, or assignin If possible, avoid using these functions
altogether. See “Alternatives to the eval
Function” on page 2-83.

Calling a MATLAB script that creates | Convert the script to a function and pass the
a variable variable using arguments. This approach also
clarifies the code.

Assigning to a variable in the Assign the variable into the base workspace,
MATLAB debugger such as

K>> assignin(“base®, "X" ,myvalue)

Another way to avoid dynamic assignment is to explicitly declare the variable within
the function. For example, suppose a script named makeX.m assigns a value to variable
X. A function that calls makeX and explicitly declares X avoids the dynamic assignment
error because X 1s in the function workspace. A common way to declare a variable is to
initialize its value to an empty array:

function noerror
X =11;

nestedfx

function nestedfx

20-39

20 Function Basics

makeX
end
end

More About

. “Base and Function Workspaces” on page 20-10

20-40

Private Functions

Private Functions

This topic explains the term private function, and shows how to create and use private
functions.

Private functions are useful when you want to limit the scope of a function. You
designate a function as private by storing it in a subfolder with the name private.
Then, the function is available only to functions in the folder immediately above the
private subfolder, or to scripts called by the functions that reside in the parent folder.

For example, within a folder that is on the MATLAB search path, create a subfolder
named private. Do not add private to the path. Within the private folder, create a
function in a file named findme.m:

function Ffindme
% FINDME An example of a private function.

disp("You found the private function.")

Change to the folder that contains the private folder and create a file named
visible.m.

function visible
findme

Change your current folder to any location and call the visible function.
visible
You found the private function.

Although you cannot call the private function from the command line or from functions
outside the parent of the private folder, you can access its help:

help private/findme

findme An example of a private function.

Private functions have precedence over standard functions, so MATLAB finds a private
function named test.m before a nonprivate program file named test.m. This allows
you to create an alternate version of a particular function while retaining the original in
another folder.

20-41

20 Function Basics

More About

. “Function Precedence Order” on page 20-43

20-42

Function Precedence Order

Function Precedence Order

This topic explains how MATLAB determines which function to call when multiple
functions in the current scope have the same name. The current scope includes the
current file, an optional private subfolder relative to the currently running function, the
current folder, and the MATLAB path.

MATLAB uses this precedence order:

1

Variables

Before assuming that a name matches a function, MATLAB checks for a variable
with that name in the current workspace.

Note: If you create a variable with the same name as a function, MATLAB cannot
run that function until you clear the variable from memory.

Imported package functions

A package function is associated with a particular folder. When you import a
package function using the import function, it has precedence over all other
functions with the same name.

Nested functions within the current function
Local functions within the current file

Private functions

Private functions are functions in a subfolder named private that is immediately
below the folder of the currently running file.

Object functions

An object function accepts a particular class of object in its input argument list.
When there are multiple object functions with the same name, MATLAB checks the
classes of the input arguments to determine which function to use.

Class constructors in @ folders
MATLAB uses class constructors to create a variety of objects (such as timeseries

or audioplayer), and you can define your own classes using object-oriented
programming. For example, if you create a class folder @polynom and a constructor

20-43

20 Function Basics

20-44

function @polynom/polynom.m, the constructor takes precedence over other
functions named polynom.m anywhere on the path.

8 Loaded Simulink® models
9 Functions in the current folder
10 Functions elsewhere on the path, in order of appearance

When determining the precedence of functions within the same folder, MATLAB
considers the file type, in this order:

1 Built-in function
2 MEX-function
3 Simulink model files that are not loaded, with file types in this order:

a SLXfile
b MDL file
App file (-.mlapp) created using MATLAB App Designer

Program file with a .mIx extension

o U A

P-file (that is, an encoded program file with a . p extension)

7 Program file with a .m extension

For example, if MATLAB finds a .m file and a P-file with the same name in the same
folder, it uses the P-file. Because P-files are not automatically regenerated, make sure
that you regenerate the P-file whenever you edit the program file.

To determine the function MATLAB calls for a particular input, include the function
name and the input in a call to the which function. For example, determine the location
of the max function that MATLAB calls for double and int8 values:

testval = 10;
which max(testval)

% double method
built-in (matlabroot\toolbox\matlab\datafun\@double\max)

testval = int8(10);
which max(testval)

% Int8 method
built-in (matlabroot\toolbox\matlab\datafun\@int8\max)

Function Precedence Order

For more information, see:

+ “What Is the MATLAB Search Path?”
* Variables on page 1-5

“Types of Functions” on page 20-20
“Class Precedence and MATLAB Path”

20-45

Function Arguments

* “Find Number of Function Arguments” on page 21-2

* “Support Variable Number of Inputs” on page 21-4

+ “Support Variable Number of Outputs” on page 21-6

+ “Validate Number of Function Arguments” on page 21-8

+ “Argument Checking in Nested Functions” on page 21-11

+ “Ignore Function Inputs” on page 21-13

* “Check Function Inputs with validateattributes” on page 21-14
+ “Parse Function Inputs” on page 21-17

* “Input Parser Validation Functions” on page 21-21

21

Function Arguments

Find Number of Function Arguments

21-2

This example shows how to determine how many input or output arguments your
function receives using nargin and nargout.

Input Arguments

Create a function in a file named addme .m that accepts up to two inputs. Identify the
number of inputs with nargin.

function ¢ = addme(a,b)

switch nargin

case 2
c =a+ b;
case 1
c = a+ a;
otherwise
c = 0;
end

Call addme with one, two, or zero input arguments.
addme(42)

ans =
84

addme(2,4000)

ans =
4002
addme
ans =
0
Output Arguments

Create a new function in a file named addme2.m that can return one or two outputs (a
result and its absolute value). Identify the number of requested outputs with nargout.

function [result,absResult] = addme2(a,b)

Find Number of Function Arguments

switch nargin
case 2
result
case 1
result
otherwise
result

I I
» o
+ o+
5 8

1
o

end

if nargout > 1
absResult = abs(result);
end

Call addme2 with one or two output arguments.

value = addme2(11,-22)

value =
-11

[value,absValue] = addme2(11,-22)

value =
-11

absValue =
11

Functions return outputs in the order they are declared in the function definition.

See Also

nargin | narginchk | nargout | nargoutchk

21-3

21

Function Arguments

Support Variable Number of Inputs

214

This example shows how to define a function that accepts a variable number of input
arguments using varargin. The varargin argument is a cell array that contains the
function inputs, where each input is in its own cell.

Create a function in a file named plotWithTitle.m that accepts a variable number of
paired (x,y) inputs for the plot function and an optional title. If the function receives an
odd number of inputs, it assumes that the last input is a title.

function plotWithTitle(varargin)
if rem(nargin,2) ~= 0
myTitle = varargin{nargin};
numPlotlnputs = nargin - 1;
else
myTitle = "Default Title";
numPlotlnputs = nargin;
end

plot(varargin{l:numPlotinputs})
title(myTitle)

Because varargin is a cell array, you access the contents of each cell using curly braces,
{}. The syntax varargin{l:numPlotlnputs} creates a comma-separated list of inputs
to the plot function.

Call plotWithTitle with two sets of (x,y) inputs and a title.

X = [1:.1:10];

yl = sin(X);

y2 = cos(X);

plotWithTitle(X,yl,X,y2,"Sine and Cosine")

You can use varargin alone in an input argument list, or at the end of the list of inputs,
such as

function myfunction(a,b,varargin)

In this case, varargin{1} corresponds to the third input passed to the function, and
nargin returns length(varargin) + 2.

See Also

nargin | varargin

Support Variable Number of Inputs

Related Examples

“Access Data in Cell Array” on page 12-5

More About

“Argument Checking in Nested Functions” on page 21-11

“Comma-Separated Lists” on page 2-74

21-5

21

Function Arguments

Support Variable Number of Outputs

21-6

This example shows how to define a function that returns a variable number of output
arguments using varargout. Output varargout is a cell array that contains the
function outputs, where each output is in its own cell.

Create a function in a file named magicFfill .m that assigns a magic square to each
requested output.

function varargout = magicfill
nOutputs = nargout;
varargout = cell(1,nOutputs);
for k = 1:nOutputs

varargout{k} = magic(k);
end

Indexing with curly braces {} updates the contents of a cell.

Call magicfTill and request three outputs.

[first,second,third] = magicfill

first =
1
second =
1 3
4 2
third =
8 1 6
3 5 7
4 9 2

MATLAB assigns values to the outputs according to their order in the varargout array.
For example, first == varargout{1}.

You can use varargout alone in an output argument list, or at the end of the list of
outputs, such as

function [Xx,y,varargout] = myfunction(a,b)

Support Variable Number of Outputs

In this case, varargout{1} corresponds to the third output that the function returns,
and nargout returns length(varargout) + 2.

See Also

nargout | varargout

Related Examples
. “Access Data in Cell Array” on page 12-5

More About
. “Argument Checking in Nested Functions” on page 21-11

21-7

21

Function Arguments

Validate Number of Function Arguments

21-8

This example shows how to check whether your custom function receives a valid number
of input or output arguments. MATLAB performs some argument checks automatically.
For other cases, you can use narginchk or nargoutchk.

Automatic Argument Checks

MATLAB checks whether your function receives more arguments than expected when
it can determine the number from the function definition. For example, this function
accepts up to two outputs and three inputs:

function [x,y] = myFunction(a,b,c)

If you pass too many inputs to myFunction, MATLAB issues an error. You do not need
to call narginchk to check for this case.

[X,Y] = myFunction(1,2,3,4)

Error using myFunction
Too many input arguments.

Use the narginchk and nargoutchk functions to verify that your function receives:

* A minimum number of required arguments.

* No more than a maximum number of arguments, when your function uses varargin
or varargout.

Input Checks with narginchk

Define a function in a file named testValues.m that requires at least two inputs. The
first input is a threshold value to compare against the other inputs.

function testValues(threshold,varargin)
minlnputs = 2;

maxlnputs = Inf;
narginchk(minlnputs,maxlnputs)

for k = 1:(nargin-1)
if (varargin{k} > threshold)
fprintf("Test value %d exceeds %d\n®,k,threshold);
end
end

Validate Number of Function Arguments

Call testValues with too few inputs.
testValues(10)

Error using testValues (line 4)
Not enough input arguments.

Call testValues with enough inputs.
testValues(10,1,11,111)

Test value 2 exceeds 10
Test value 3 exceeds 10

Output Checks with nargoutchk

Define a function in a file named mysize.m that returns the dimensions of the input
array in a vector (from the size function), and optionally returns scalar values
corresponding to the sizes of each dimension. Use nargoutchk to verify that the number
of requested individual sizes does not exceed the number of available dimensions.

function [sizeVector,varargout] = mysize(x)
minOutputs = O;

maxOutputs = ndims(x) + 1;
nargoutchk(minOutputs,maxOutputs)

sizeVector = size(X);

varargout = cell(1,nargout-1);

for k = 1:length(varargout)
varargout{k} = sizeVector(k);

end

Call mysize with a valid number of outputs.

A = rand(3,4,2);
[fullsize,nrows,ncols,npages] = mysize(A)

fullsize =
3 4 2

nrows =

ncols =

21-9

21 Function Arguments

4

npages =
2

Call mysize with too many outputs.

A=1;
[fullsize,nrows,ncols,npages] = mysize(A)

Error using mysize (line 4)
Too many output arguments.

See Also

narginchk | nargoutchk

Related Examples
. “Support Variable Number of Inputs” on page 21-4
. “Support Variable Number of Outputs” on page 21-6

21-10

Argument Checking in Nested Functions

Argument Checking in Nested Functions

This topic explains special considerations for using varargin, varargout, nargin, and
nargout with nested functions.

varargin and varargout allow you to create functions that accept variable numbers
of input or output arguments. Although varargin and varargout look like function
names, they refer to variables, not functions. This is significant because nested functions
share the workspaces of the functions that contain them.

If you do not use varargin or varargout in the declaration of a nested function, then
varargin or varargout within the nested function refers to the arguments of an outer
function.

For example, create a function in a file named showArgs.m that uses varargin and has
two nested functions, one that uses varargin and one that does not.

function showArgs(varargin)
nestedl1(3,4)
nested2(5,6,7)

function nestedl(a,b)
disp(“nestedl: Contents of varargin{l}")
disp(varargin{l})

end

function nested2(varargin)
disp(“nested2: Contents of varargin{l}")
disp(varargin{l})

end

end
Call the function and compare the contents of varargin{1} in the two nested functions.
showArgs(0,1,2)

nestedl: Contents of varargin{l}
0

nested2: Contents of varargin{l}
5

21-11

21 Function Arguments

On the other hand, nargin and nargout are functions. Within any function, including
nested functions, calls to nargin or nargout return the number of arguments for that
function. If a nested function requires the value of nargin or nargout from an outer
function, pass the value to the nested function.

For example, create a function in a file named showNumArgs.m that passes the number
of input arguments from the primary (parent) function to a nested function.

function showNumArgs(varargin)

disp(["Number of inputs to showNumArgs: °,int2str(nargin)]);
nestedFx(nargin,2,3,4)

function nestedFx(n,varargin)
disp(["Number of inputs to nestedFx: ", int2str(nargin)]);
disp(["Number of inputs to its parent: ",int2str(n)]);
end

end

Call showNumArgs and compare the output of nargin in the parent and nested
functions.

showNumArgs(0, 1)

Number of inputs to showNumArgs: 2
Number of inputs to nestedFx: 4
Number of iInputs to its parent: 2

See Also

nargin | nargout | varargin | varargout

21-12

Ignore Function Inputs

Ignore Function Inputs

This example shows how to ignore inputs in your function definition using the tilde (~)
operator.

Use this operator when your function must accept a predefined set of inputs, but your
function does not use all of the inputs. Common applications include defining callback
functions, as shown here, or deriving a class from a superclass.

Define a callback for a push button in a file named colorButton.m that does not use the
eventdata input. Ignore the input with a tilde.

function colorButton
figure;
uicontrol ("Style”, "pushbutton®,"String”,"Click me", "Callback",@btnCal Iback)

function btnCallback(h,~)
set(h, "BackgroundColor”,rand(3,1))

The function declaration for btnCal Iback is essentially the same as

function btnCallback(h,eventdata)

However, using the tilde prevents the addition of eventdata to the function workspace
and makes it clearer that the function does not use eventdata.

You can ignore any number of function inputs, in any position in the argument list.
Separate consecutive tildes with a comma, such as

myfunction(myinput,~,~)

21-13

21 Function Arguments

Check Function Inputs with validateattributes

Verify that the inputs to your function conform to a set of requirements using the
val idateattributes function.

validateattributes requires that you pass the variable to check and the supported
data types for that variable. Optionally, pass a set of attributes that describe the valid
dimensions or values.

Check Data Type and Other Atiributes

Define a function in a file named checkme.m that accepts up to three inputs: a, b, and c.
Check whether:

* ais a two-dimensional array of positive double-precision values.
* b contains 100 numeric values in an array with 10 columns.

* C1s a nonempty character vector or cell array.

function checkme(a,b,c)

validateattributes(a,{"double"},{ "positive~,"2d"})
validateattributes(b,{ " numeric"},{"numel",100, "ncols”,10})
validateattributes(c,{"char®,“cell"},{"nonempty"})
disp("All inputs are ok.")

The curly braces {} indicate that the set of data types and the set of additional attributes
are in cell arrays. Cell arrays allow you to store combinations of text and numeric data,
or character vectors of different lengths, in a single variable.

Call checkme with valid inputs.
checkme(pi,rand(5,10,2), "text")
All inputs are ok.

The scalar value pi is two-dimensional because size(pi) = [1,1].

Call checkme with invalid inputs. The val idateattributes function issues an error
for the first input that fails validation, and checkme stops processing.

checkme(-4)

21-14

Check Function Inputs with validateattributes

Error using checkme (line 3)
Expected input to be positive.

checkme(pi,rand(3,4,2))

Error using checkme (line 4)
Expected input to be an array with number of elements equal to 100.

checkme(pi,rand(5,10,2),struct)

Error using checkme (line 5)
Expected input to be one of these types:

char, cell
Instead its type was struct.

The default error messages use the generic term input to refer to the argument that
failed validation. When you use the default error message, the only way to determine
which input failed is to view the specified line of code in checkme.

Add Input Name and Position to Errors

Define a function in a file named checkdetai ls.m that performs the same validation as
checkme, but adds details about the input name and position to the error messages.

function checkdetails(a,b,c)

validateattributes(a,{"double"},{ positive”,"2d"}, ", "First",1)
validateattributes(b,{ " numeric*},{"numel”,100, "ncols”,10}," ", "Second”,2)
validateattributes(c,{"char™},{ " nonempty"}," ", "Third",3)

disp("All inputs are ok.")

The empty character vector " * for the fourth input to val idateattributesisa
placeholder for an optional function name. You do not need to specify a function name
because it already appears in the error message. Specify the function name when you
want to include it in the error identifier for additional error handling.

Call checkdetai ls with invalid inputs.
checkdetails(-4)

Error using checkdetails (line 3)
Expected input number 1, First, to be positive.

21-15

21 Function Arguments

checkdetails(pi,rand(3,4,2))
Error using checkdetails (line 4)

Expected input number 2, Second, to be an array with
number of elements equal to 100.

See Also

validateattributes | validatestring

21-16

Parse Function Inputs

Parse Function Inputs

This example shows how to define required and optional inputs, assign defaults to
optional inputs, and validate all inputs to a custom function using the Input Parser.

The Input Parser provides a consistent way to validate and assign defaults to inputs,
improving the robustness and maintainability of your code. To validate the inputs, you
can take advantage of existing MATLAB functions or write your own validation routines.

Step 1. Define your function.

Create a function in a file named printPhoto.m. The printPhoto function has one

required input for the file name, and optional inputs for the finish (glossy or matte), color
space (RGB or CMYK), width, and height.

function printPhoto(Ffilename,varargin)

In your function declaration statement, specify required inputs first. Use varargin to
support optional inputs.

Step 2. Create an InputParser object.

Within your function, call inputParser to create a parser object.
p = inputParser;
Step 3. Add inputs to the scheme.

Add inputs to the parsing scheme in your function using addRequired, addOptional,
or addParameter. For optional inputs, specify default values.

For each input, you can specify a handle to a validation function that checks the input
and returns a scalar logical (true or false) or errors. The validation function can be an
existing MATLAB function (such as ischar or isnumeric) or a function that you create
(such as an anonymous function or a local function).

In the printPhoto function, filename is a required input. Define finish and color
as optional inputs, and width and height as optional parameter value pairs.

defaultFinish "glossy”;
validFinishes = {"glossy”, "matte”};
checkFinish = @(x) any(validatestring(x,validFinishes));

21-17

21

Function Arguments

21-18

defaultColor = "RGB";
validColors = {"RGB","CMYK"};
checkColor = @(x) any(validatestring(x,validColors));

defaultWidth = 6;
defaultHeight = 4;

addRequired(p, “filename" ,@ischar);

addOptional (p, "finish",defaultFinish,checkFinish)
addOptional (p, “color” ,defaultColor,checkColor)
addParameter(p, "width" ,defaultWidth,@isnumeric)
addParameter(p, "height”,defaultHeight,@isnumeric)

Inputs that you add with addRequired or addOptional are positional arguments.
When you call a function with positional inputs, specify those values in the order they are
added to the parsing scheme.

Inputs added with addParameter are not positional, so you can pass values for height
before or after values for width. However, parameter value inputs require that you pass
the input name (*height® or "width") along with the value of the input.

If your function accepts optional input strings or character vectors and parameter name
and value pairs, specify validation functions for the optional inputs. Otherwise, the Input
Parser interprets the optional strings or character vectors as parameter names. For
example, the checkFinish validation function ensures that printPhoto interprets
"glossy" as a value for Finish and not as an invalid parameter name.

Step 4. Set properties to adjust parsing (optional).

By default, the Input Parser makes assumptions about case sensitivity, function names,
structure array inputs, and whether to allow additional parameter names and values
that are not in the scheme. Properties allow you to explicitly define the behavior. Set
properties using dot notation, similar to assigning values to a structure array.

Allow printPhoto to accept additional parameter value inputs that do not match the
input scheme by setting the KeepUnmatched property of the Input Parser.

p-KeepUnmatched = true;

If KeepUnmatched is false (default), the Input Parser issues an error when inputs do
not match the scheme.

Parse Function Inputs

Step 5. Parse the inputs.

Within your function, call the parse method. Pass the values of all of the function
inputs.

parse(p,filename,varargin{:})
Step 6. Use the inputs in your function.
Access parsed inputs using these properties of the inputParser object:

* Results — Structure array with names and values of all inputs in the scheme.

+ Unmatched — Structure array with parameter names and values that are passed to
the function, but are not in the scheme (when KeepUnmatched is true).

+ UsingDefaults — Cell array with names of optional inputs that are assigned their
default values because they are not passed to the function.

Within the printPhoto function, display the values for some of the inputs:

disp(["File name: ",p.Results.filename])
disp(["Finish: ", p.Results.finish])

if ~isempty(fieldnames(p.Unmatched))
disp("Extra inputs:®)
disp(p-Unmatched)

end

if ~isempty(p-UsingDefaults)
disp("Using defaults: %)
disp(p-UsingDefaults)

end

Step 7. Call your function.
The Input Parser expects to receive inputs as follows:

* Required inputs first, in the order they are added to the parsing scheme with
addRequired.

* Optional positional inputs in the order they are added to the scheme with
addOptional.

+ Positional inputs before parameter name and value pair inputs.

* Parameter names and values in the form Namel,Valuel, . . . ,NameN, ValueN.

21-19

21 Function Arguments

Pass several combinations of inputs to printPhoto, some valid and some invalid:
printPhoto("myfile.jpg”)
File name: myfile.jpg
Finish: glossy
Using defaults:
finish "color- "width*® "height”
printPhoto(100)

Error using printPhoto (line 23)
The value of “filename® is invalid. It must satisfy the function: ischar.

printPhoto("myfile.jpg”, "satin®)

Error using printPhoto (line 23)
The value of "finish® is invalid. Expected input to match one of these strings:

"glossy®, "matte”

The input, "satin®, did not match any of the valid strings.
printPhoto("myfile.jpg”, “height®,10, "width",8)

File name: myfile.jpg

Finish: glossy

Using defaults:

"finish* "color*®

To pass a value for the nth positional input, either specify values for the previous (n
— 1) inputs or pass the input as a parameter name and value pair. For example, these
function calls assign the same values to Finish (default "glossy”) and color:

printPhoto("myfile.gif", "glossy”,"CMYK") % positional

printPhoto("myfile.gif",“color”, "CMYK™) % name and value

See Also

inputParser | varargin

More About

. “Input Parser Validation Functions” on page 21-21

21-20

Input Parser Validation Functions

Input Parser Validation Functions

This topic shows ways to define validation functions that you pass to the Input Parser to
check custom function inputs.

The Input Parser methods addRequired, addOptional, and addParameter each

accept an optional handle to a validation function. Designate function handles with an at
(@) symbol.

Validation functions must accept a single input argument, and they must either return
a scalar logical value (true or False) or error. If the validation function returns false,
the Input Parser issues an error and your function stops processing.

There are several ways to define validation functions:

* Use an existing MATLAB function such as ischar or isnumeric. For example,
check that a required input named num is numeric:

p = inputParser;
checknum = @isnumeric;
addRequired(p, "num®,checknum)

parse(p, "text")

The value of "num® is invalid. It must satisfy the function: isnumeric.

+ Create an anonymous function. For example, check that input num is a numeric scalar
greater than zero:

p = inputParser;
checknum = @(x) isnumeric(x) && isscalar(x) && (x > 0);
addRequired(p, "num®,checknum)

parse(p,rand(3))

The value of "num® is invalid. It must satisfy the function: @(x) isnumeric(x) && is

* Define your own function, typically a local function in the same file as your primary
function. For example, in a file named usenum.m, define a local function named
checknum that issues custom error messages when the input num to usenum is not a
numeric scalar greater than zero:

function usenum(num)
p = inputParser;

21-21

21 Function Arguments

addRequired(p, "“num®,@checknum) ;
parse(p,num);

function TF = checknum(x)
TF = false;
if ~isscalar(x)
error("Input is not scalar®);
elseif ~isnumeric(x)
error("Input is not numeric®);
elseif (x <= 0)
error("Input must be > 0%);
else
TF = true;
end

Call the function with an invalid input:
usenum(-1)

Error using usenum (line 4)
The value of "num® is invalid. Input must be > 0

See Also

inputParser | is* | validateattributes

Related Examples
. “Parse Function Inputs” on page 21-17

. “Create Function Handle” on page 13-2

More About

. “Anonymous Functions” on page 20-24

21-22

Debugging MATLAB Code

“Debug a MATLAB Program” on page 22-2
“Set Breakpoints” on page 22-9
“Examine Values While Debugging” on page 22-18

22 Debugging MATLAB Code

Debug a MATLAB Program

22-2

To debug your MATLAB program graphically, use the Editor/Debugger. Alternatively,
you can use debugging functions in the Command Window. Both methods are
interchangeable.

Before you begin debugging, make sure that your program is saved and that the program
and any files it calls exist on your search path or in the current folder.

+ If you run a file with unsaved changes from within the Editor, then the file is
automatically saved before it runs.

+ If you run a file with unsaved changes from the Command Window, then MATLAB
software runs the saved version of the file. Therefore, you do not see the results of
your changes.

Note: Debugging using the graphical debugger is not supported in live scripts. For more
information, see “What Is a Live Script?” on page 19-2

Set Breakpoint

Set breakpoints to pause the execution of a MATLAB file so you can examine the value or
variables where you think a problem could be. You can set breakpoints using the Editor,
using functions in the Command Window, or both.

There are three different types of breakpoints: standard, conditional, and error. To add a
standard breakpoint in the Editor, click the breakpoint alley at an executable line where
you want to set the breakpoint. The breakpoint alley is the narrow column on the left side
of the Editor, to the right of the line number. Executable lines are indicated by a dash
(—) in the breakpoint alley. For example, click the breakpoint alley next to line 2 in the
code below to add a breakpoint at that line.

Debug a MATLAB Program

MY Erograrm.m +
iCreate an array of 10 ones.
(] x = ones(1,10);
FPerform a calculation on items 2Z2-6& in the array
- fornmn = 2:6
- ®xin) = 2 * =min-1});

=1 & LA = La Ra

- end

If an executable statement spans multiple lines, you can set a breakpoint at each line
in that statement, even though the additional lines do not have a — (dash) in the
breakpoint alley. For example, in this code. you can set a breakpoint at all four lines:

- if a
E& b

= L R
|
0
I
[
k]

For more information on the different types of breakpoints, see “Set Breakpoints” on page
22-9.

Run File

After setting breakpoints, run the file from the Command Window or the Editor.
Running the file produces these results:

The RunD button changes to a PauseDU button.

* The prompt in the Command Window changes to K>> indicating that MATLAB is in
debug mode and that the keyboard is in control.

+ MATLAB pauses at the first breakpoint in the program. In the Editor, a green arrow
just to the right of the breakpoint indicates the pause. The program does not execute
the line where the pause occurs until it resumes running. For example, here the
debugger pauses before the program executes X = ones(1,10);.

Create an array of 10 ones.

L]
@5 x = ones(1,10);

|]

22-3

22 Debugging MATLAB Code

22-4

+ MATLAB displays the current workspace in the Function Call Stack, on the Editor
tab in the Debug section.

Function Call Stack:

myprogram -

If you use debugging functions from the Command Window, use dbstack to view the
Function Call Stack.

Tip: To debug a program, run the entire file. MATLAB does not stop at breakpoints when
you run an individual section.

For more information on using the Function Call Stack, see “Select Workspace” on page
22-18

Pause a Running File

To pause the execution of a program while it is running, go to the Editor tab and click
the Pause[”:l button. MATLAB pauses execution at the next executable line, and the
Pause[”] button changes to a Continuel# button. To continue execution, press the
Continuel® button.

Pausing is useful if you want to check on the progress of a long running program to
ensure that it is running as expected.

Note: Clicking the pause button can cause MATLAB to pause in a file outside your

own program file. Pressing the Continuel® button resumes normal execution without
changing the results of the file.

Find and Fix a Problem

While your code is paused, you can view or change the values of variables, or you can
modify the code.

Debug a MATLAB Program

View or Change Variable While Debugging

View the value of a variable while debugging to see whether a line of code has produced
the expected result or not. To do this, position your mouse pointer to the left of the
variable. The current value of the variable appears in a data tip.

for m = 2:6

n: 1xl1 double =+
end

The data tip stays in view until you move the pointer. If you have trouble getting the
data tip to appear, click the line containing the variable, and then move the pointer next
to the variable. For more information, see “Examine Values While Debugging” on page
22-18.

You can change the value of a variable while debugging to see if the new value produces
expected results. With the program paused, assign a new value to the variable in the
Command Window, Workspace browser, or Variables Editor. Then, continue running or
stepping through the program.

For example, here MATLAB is paused inside a for loop wheren = 2:

My prograrm.m +
1 FCreate an array of 10 ones.
2 — ¥ = ones (1,10}
3
4 FPerform a calculation on items 2Z2-6 in the array
== for m = 2:6
6@ || xin) =2 * x(n-1);
7= end

n: 1xl1 double

3]

* Typen = 7; in the command line to change the current value of n from 2 to 7.

22-5

22 Debugging MATLAB Code

Press Continue [e> to run the next line of code.
MATLAB runs the code line x(n) = 2 * x(n-1); withn = 7.
Modify Section of Code While Debugging

You can modify a section of code while debugging to test possible fixes without having to
save your changes. Usually, it is a good practice to modify a MATLAB file after you quit
debugging, and then save the modification and run the file. Otherwise, you might get
unexpected results. However, there are situations where you want to experiment during
debugging.

To modify a program while debugging:
1 While your code is paused, modify a part of the file that has not yet run.

Breakpoints turn gray, indicating they are invalid.

2 Select all the code after the line at which MATLAB is paused, right-click, and then
select Evaluate Selection from the context menu.

22-6

Evaluate Selection Fa
Open Selection Ctrl+D
Help on Selection F1
Cut Ctrl+ X
Copy Ctrl+C
Paste Ctrl+V

| myprogram.m® = | + | \

2Create an array of 10 ones.

After the code evaluation is complete, stop debugging and save or undo any changes
made before continuing the debugging process.

Debug a MATLAB Program

Step Through File

While debugging, you can step through a MATLAB file, pausing at points where you

want to examine values.

This table describes available debugging actions and the different methods you can use to

execute them.

Description Toolbar Button Function Alternative
Continue execution of file until the line % None
where the cursor is positioned. Also Run to Cursor

available on the context menu.

Execute the current line of the file. "—L-IS - dbstep
Execute the current line of the file and, if ¥ Steo In dbstep in
the line is a call to another function, step p

into that function.

Resume execution of file until completion or [# Continue dbcont
until another breakpoint is encountered.

After stepping in, run the rest of the called Gt dbstep out
function or local function, leave the called =t

function, and pause.

Pause debug mode. [l[lPause None

Exit debug mode. DQuit Debugging dbquit

End Debugging Session

After you identify a problem, end the debugging session by going to the Editor tab and

clicking Quit DebuggingD. You must end a debugging session if you want to change
and save a file, or if you want to run other programs in MATLAB.

After you quit debugging, pause indicators in the Editor display no longer appear, and
the normal >> prompt reappears in the Command Window in place of the K>>. You no

longer can access the call stack.

If MATLAB software becomes nonresponsive when it stops at a breakpoint, press Ctrl+c

to return to the MATLAB prompt.

22-7

22 Debugging MATLAB Code

Related Examples
. “Set Breakpoints” on page 22-9
. “Examine Values While Debugging” on page 22-18

22-8

Set Breakpoints

Set Breakpoints

In this section...

“Standard Breakpoints” on page 22-10

“Conditional Breakpoints” on page 22-11

“Error Breakpoints” on page 22-12

“Breakpoints in Anonymous Functions” on page 22-15
“Invalid Breakpoints” on page 22-16

“Disable Breakpoints” on page 22-16

“Clear Breakpoints” on page 22-17

Setting breakpoints pauses the execution of your MATLAB program so that you can
examine values where you think a problem might be. You can set breakpoints using the
Editor or by using functions in the Command Window.

There are three types of breakpoints:

+ Standard breakpoints

* Conditional breakpoints

* Error breakpoints

You can set breakpoints only at executable lines in saved files that are in the current

folder or in folders on the search path. You can set breakpoints at any time, whether
MATLAB is idle or busy running a file.

By default, MATLAB automatically opens files when it reaches a breakpoint. To disable
this option:

1

From the Home tab, in the Environment section, click @ Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Editor/Debugger.

Clear the Automatically open file when MATLAB reaches a breakpoint option
and click OK.

22-9

22 Debugging MATLAB Code

22-10

Note: Debugging using the graphical debugger is not supported in live scripts. For more
information, see “What Is a Live Script?” on page 19-2

Standard Breakpoints

A standard breakpoint stops at a specified line in a file. You can set a standard
breakpoint using these methods:

Click the breakpoint alley at an executable line where you want to set the breakpoint.
The breakpoint alley is the narrow column on the left side of the Editor, to the right
of the line number. Executable lines are indicated by a — (dash) in the breakpoint
alley. If an executable statement spans multiple lines, you can set a breakpoint at
each line in that statement, even though the additional lines do not have a — (dash)
in the breakpoint alley. For example, in this code, you can set a breakpoint at all four
lines:

£& b

= La R
|
(4]
I
[
M

If you attempt to set a breakpoint at a line that is not executable, such as a comment
or a blank line, MATLAB sets it at the next executable line.

Use the dbstop function. For example, to add a breakpoint at line 2 in a file named
myprogram.m, type:

dbstop in myprogram at 2
MATLAB adds a breakpoint at line 2 in the function myprogram.

Set Breakpoints

Myprograrm.m +
1 %iCreate an array of 10 ones.
20 x = ones(1,10);
2
4 tPerform a calculation on items Z-& in the array
== for n = 2:6
& — ®x(n) = 2 % =®min-1);
[

end

To examine values at increments in a for loop, set the breakpoint within the loop, rather
than at the start of the loop. If you set the breakpoint at the start of the for loop, and
then step through the file, MATLAB stops at the for statement only once. However, if
you place the breakpoint within the loop, MATLAB stops at each pass through the loop.

% Perform a calculation on items 2 — & in the array
3= for m = 2:6
(0] x(n) =2 % xin - 1):
T - Endl

Conditional Breakpoints

A conditional breakpoint causes MATLAB to stop at a specified line in a file only when
the specified condition is met. Use conditional breakpoints when you want to examine
results after some iterations in a loop.

You can set a conditional breakpoint from the Editor or Command Window:

* Editor— Right-click the breakpoint alley at an executable line where you want to set
the breakpoint and select Set/Modify Condition.

When the Editor dialog box opens, enter a condition and click OK. A condition is any
valid MATLAB expression that returns a logical scalar value.

As noted in the dialog box, MATLAB evaluates the condition before running the line.
For example, suppose that you have a file called myprogram.m.

22-11

22 Debugging MATLAB Code

Myprograrm.m +
1 (Create an array of 10 ones
2 - x = ones(1,10);
3
4 $Perform a calculation on items 2-6 in the array
5= for mn = 2:6
&80 xin) = 2 * x{n-1);
[

Add a breakpoint with the following condition at line 6:

n >= 4
A yellow, conditional breakpoint icon appears in the breakpoint alley at that line.

+ Command Window — Use the dbstop function. For example, to add a conditional
breakpoint in myprogram.m at line 6 type:

dbstop in myprogram at 6 if n>=4

When you run the file, MATLAB enters debug mode and pauses at the line when the
condition is met. In the myprogram example, MATLAB runs through the for loop
twice and pauses on the third iteration at line 6 when n is 4. If you continue executing,
MATLAB pauses again at line 6 on the fourth iteration when n is 5.

Error Breakpoints

An error breakpoint causes MATLAB to stop program execution and enter debug mode
if MATLAB encounters a problem. Unlike standard and conditional breakpoints, you
do not set these breakpoints at a specific line in a specific file. When you set an error
breakpoint, MATLAB stops at any line in any file if the error condition specified occurs.
MATLAB then enters debug mode and opens the file containing the error, with the
execution arrow at the line containing the error.

To set an error breakpoint, on the Editor tab, click i2 Breakpoints and select from these
options:

+ Stop on Errors to stop on all errors.

+ Stop on Warnings to stop on all warnings.

22-12

Set Breakpoints

More Error and Warning Handling Options to open the Stop if Errors/
Warnings for All Files dialog box where you can choose among more options.

You also can set an error breakpoint programmatically. For more information, see
dbstop.

Advanced Error Breakpoint Configuration

To further configure error breakpoints, use the Stop if Error/Warning for All Files
dialog box. On the Editor tab, click &2 Breakpoints and select More Error and
Warning Handling Options. Each tab in the dialog box details a specific type of error
breakpoint:

Errors

If an error occurs, execution stops, unless the error is in a try. . . catch block.
MATLAB enters debug mode and opens the file to the line that produced the error.
You cannot resume execution.

Try/Catch Errors

If an error occurs in a try. . .catch block, execution pauses. MATLAB enters debug
mode and opens the file to the line in the try portion of the block that produced the
error. You can resume execution or step through the file using additional debugging
features.

Warnings

If a warning occurs, execution pauses. MATLAB enters debug mode and opens the file
to the line that produced the warning. You can resume execution or step through the
file using additional debugging features.

NaN or Inf

If an operator, function call, or scalar assignment produces a NaN (not-a-number) or
Inf (infinite) value, execution pauses immediately after the line that encountered the
value. MATLAB enters debug mode, and opens the file. You can resume execution or
step through the file using additional debugging features.

You can select the state of each error breakpoint in the dialog box:

Never stop... clears the error breakpoint of that type.

Always stop... adds an error breakpoint of that type.

22-13

22 Debugging MATLAB Code

22-14

+ Use message identifiers... adds a limited error breakpoint of that type. Execution
stops only for the error you specify with the corresponding message identifier.

You can add multiple message identifiers, and then edit or remove them.

Note: This option is not available for the NaN or Inf type of error breakpoint.

To add a message identifier:

Click the Errors, Try/Catch Errors, or Warnings tab.

Click Use Message Identifiers.

Click Add.

In the resulting Add Message Identifier dialog box, type the message identifier
of the error for which you want MATLAB to stop. The identifier is of the form
component:message (for example, MATLAB:narginchk:notEnoughlnputs).

5 Click OK.

BhWN —

The message identifier you specified appears in the list of identifiers.

The function equivalent appears to the right of each option. For example, the function
equivalent for Always stop if error is dbstop if error.

Obtain Message Identifiers

To obtain an error message identifier generated by a MATLAB function, run the function
to produce the error, and then call MExeption. last. For example:

surf
MException. last

The Command Window displays the MException object, including the error message
identifier in the identifier field. For this example, it displays:

ans =
MException
Properties:
identifier: "MATLAB:narginchk:notEnoughlnputs*

message: "Not enough input arguments.”
cause: {}

Set Breakpoints

stack: [1x1 struct]

Methods

To obtain a warning message identifier generated by a MATLAB function, run the
function to produce the warning. Then, run this command:

[m,id] = lastwarn
MATLAB returns the last warning identifier to 1d. An example of a warning message
identifier is MATLAB:concatenation: integerilnteraction.

Breakpoints in Anonymous Functions

You can set multiple breakpoints in a line of MATLAB code that contains anonymous
functions. For example, you can set a breakpoint for the line itself, where MATLAB
software pauses at the start of the line. Or, alternatively, you can set a breakpoint for
each anonymous function in the line.

When you add a breakpoint to a line containing an anonymous function, the Editor asks
where in the line you want to add the breakpoint. If there is more than one breakpoint
in a line, the breakpoint icon is blue, regardless of the status of any of the breakpoints on
that line.

To view information about all the breakpoints on a line, hover your pointer on the
breakpoint icon. A tooltip appears with available information. For example, in this code,
line 5 contains two anonymous functions, with a breakpoint at each one. The tooltip tells
us that both breakpoints are enabled.

] g = @(c) (integral(@i(x) (X.72 + c*x + 1),0,1)):
Line: 5, anonymous function 1, Status: enabled,
Line: 5, anonymous function 2, Status: enabled.

=] @

When you set a breakpoint in an anonymous function, MATLAB pauses when the
anonymous function is called. A green arrow shows where the code defines the
anonymous function. A white arrow shows where the code calls the anonymous functions.
For example, in this code, MATLAB pauses the program at a breakpoint set for the
anonymous function sqr, at line 2 in a file called myanonymous .m. The white arrow
indicates that the sqr function is called from line 3.

22-15

22 Debugging MATLAB Code

22-16

function myanonymous
208 | sgr = B(x) =x."2;
3 - | sgr(5);
4 - end

Invalid Breakpoints
A gray breakpoint indicates an invalid breakpoint.

n arrs Nes.

% Create an array of 10 one
2@ x = ones(1,10);
Breakpoints are invalid for these reasons:

* There are unsaved changes in the file. To make breakpoints valid, save the file. The
gray breakpoints become red, indicating that they are now valid.

+ There is a syntax error in the file. When you set a breakpoint, an error message
appears indicating where the syntax error is. To make the breakpoint valid, fix the
syntax error and save the file.

Disable Breakpoints

You can disable selected breakpoints so that your program temporarily ignores them and
runs uninterrupted. For example, you might disable a breakpoint after you think you
identified and corrected a problem, or if you are using conditional breakpoints.

To disable a breakpoint, right-click the breakpoint icon, and select Disable Breakpoint
from the context menu.

An X appears through the breakpoint icon to indicate that it is disabled.
6 iE ®in) = 2 * xin - 1):

When you run dbstatus, the resulting message for a disabled breakpoint is

Breakpoint on line 6 has conditional expression "false”.

Set Breakpoints

To reenable a breakpoint, right-click the breakpoint icon and select Enable Breakpoint
from the context menu.

The X no longer appears on the breakpoint icon and program execution pauses at that
line.

Clear Breakpoints

All breakpoints remain in a file until you clear (remove) them or until they are cleared
automatically at the end of your MATLAB session.

Too clear a breakpoint, use either of these methods:

* Right-click the breakpoint icon and select Clear Breakpoint from the context menu.

+ Use the dbclear function. For example, to clear the breakpoint at line 6 in a file
called myprogram.m, type

dbclear in myprogram at 6
To clear all breakpoints in all files:

+ Place your cursor anywhere in a breakpoint line. Click iZ Breakpoints, and select
Clear All

* Use the dbclear all command. For example, to clear all the breakpoints in a file
called myprogram.m, type

dbclear all in myprogram

Breakpoints clear automatically when you end a MATLAB session. To save your
breakpoints for future sessions, see the dbstatus function.

Related Examples
. “Debug a MATLAB Program” on page 22-2
. “Examine Values While Debugging” on page 22-18

22-17

22 Debugging MATLAB Code

Examine Values While Debugging

While your program is paused, you can view the value of any variable currently in the
workspace. Examine values when you want to see whether a line of code produces the
expected result or not. If the result is as expected, continue running or step to the next
line. If the result is not as you expect, then that line, or a previous line, might contain an
error.

Note: Debugging using the graphical debugger is not supported in live scripts. For more
information, see “What Is a Live Script?” on page 19-2

Select Workspace

To examine a variable during debugging, you must first select its workspace. Variables
that you assign through the Command Window or create using scripts belong to the
base workspace. Variables that you create in a function belong to their own function
workspace. To view the current workspace, select the Editor tab. The Function Call
Stack field shows the current workspace. Alternatively, you can use the dbstack
function in the Command Window.

To select or change the workspace for the variable you want to view, use either of these
methods:

* From the Editor tab, in the Debug section, choose a workspace from the Function
Call Stack menu list.

Function Call Stack:

myprogram -

myprogram
Base

+ From the Command Window, use the dbup and dbdown functions to select the
previous or next workspace in the Function Call Stack.

To list the variables in the current workspace, use who or whos.

View Variable Value

There are several ways to view the value of a variable while debugging a program:

22-18

Examine Values While Debugging

* View variable values in the Workspace browser and Variables Editor.

The Workspace browser displays all variables in the current workspace. The Value
column of the Workspace browser shows the current value of the variable. To see
more details, double-click the variable. The Variables Editor opens, displaying the
content for that variable. You also can use the openvar function to open a variable in
the Variables Editor.

Workspace

Mame = Value Class

@ double
[1,24816,32111.1] double

+ View variable values in the MATLAB Editor.

Use your mouse to select the variable or equation. Right-click and select Evaluate
Selection from the context menu. The Command Window displays the value of the
variable or equation.

fPerform a calculation on items 2-6 in the array

for w=2-&

x Evaluate Selection Fa
end Open "n" Ctrl+D
Help on Selection F1

Cut

22-19

22 Debugging MATLAB Code

22-20

Note: You cannot evaluate a selection while MATLAB is busy, for example, running a
file.

* View variable values as a data tip in the MATLAB Editor.

To do this, position your mouse pointer over the variable. The current value of the
variable appears in a data tip. The data tip stays in view until you move the pointer.
If you have trouble getting the data tip to appear, click the line containing the
variable, and then move the pointer next to the variable.

for m = 2:6

n: 1x1 double =|)+
end

Data tips are enabled by default in the Live Editor. To enable or disable them, with
a live script open in the Live Editor, go to the View tab, and in the Display section,
select or deselect Datatips.

To view data tips in the Editor, enable them in your MATLAB preferences.

On the Home tab, in the Environment section, click @ Preferences. Then
select MATLAB > Editor/Debugger > Display.

2 Under General display options, select Enable datatips in edit mode.

+ View variable values in the Command Window.

To see all the variables currently in the workspace, call the who function. To view the
current value of a variable, type the variable name in the Command Window. For
the example, to see the value of a variable n, type n and press Enter. The Command
Window displays the variable name and its value.

When you set a breakpoint in a function and attempt to view the value of a variable in

a parent workspace, the value of that variable might not be available. This error occurs

when you attempt to access a variable while MATLAB is in the process of overwriting it.
In such cases, MATLAB returns the following message, where x represents the variable
whose value you are trying to examine.

Examine Values While Debugging

K>> x

Reference to a called function result under construction X.

The error occurs whether you select the parent workspace by using the dbup command or
by using Function Call Stack field in the Debug section of the Editor tab.

Related Examples

. “Debug a MATLAB Program” on page 22-2
. “Set Breakpoints” on page 22-9

22-21

Presenting MATLAB Code

MATLAB software enables you to present your MATLAB code in various ways. You can
share your code and results with others, even if they do not have MATLAB software.
You can save MATLAB output in various formats, including HTML, XML, and LaTeX.
If Microsoft Word or Microsoft PowerPoint applications are on your Microsoft Windows
system, you can publish to their formats as well.

“Options for Presenting Your Code” on page 23-2

“Publishing MATLAB Code” on page 23-4

“Publishing Markup” on page 23-7

“Output Preferences for Publishing” on page 23-27

“Create a MATLAB Notebook with Microsoft Word” on page 23-41

23 Presenting MATLAB Code

Options for Presenting Your Code

MATLAB provides options for presenting your code to others, including using publishing
and live scripts.

cohesive, shareable documents |,

Method Description Output Formats Details
Command-line |Use comments at the start ASCII text “Add Help for Your
help of a MATLAB file to display Program” on page 20-6
help comments when you
type help file name in the
Command Window.
Live Scripts Use live scripts to create MLX “Live Scripts”

PowerPoint (ppt)
PDF

> HTML
that include executable
MATLAB code, embedded PDF
output, and formatted text.

Publish Use comments with basic XML “Publishing MATLAB
markup to publish a document |. gMI, Code” on page 23-4
that includes text, bulleted
or numbered lists, MATLAB LaTeX Publishing MATLAB Code
code, and code results. Microsoft Word from the Editor video

(.doc/.docx)
Microsoft

23-2

Help Browser |Create HTML and XML files HTML “Display Custom
Topics to provide your own MATLAB Documentation” on page
help topics for viewing from 30-15
the MATLAB Help browser or
the web.
MATLAB Use MATLAB Report RTF MATLAB Report
Report Generator to build complex PDF Generator
Generator™ reports.
Word
HTML

http://www.mathworks.com/videos/publishing-matlab-code-from-the-editor-101570.html
http://www.mathworks.com/videos/publishing-matlab-code-from-the-editor-101570.html

Options for Presenting Your Code

You must have MATLAB
Report Generator software
installed.

23-3

23 Presenting MATLAB Code

Publishing MATLAB Code

Publishing a MATLAB Code file (.m) creates a formatted document that includes

your code, comments, and output. Common reasons to publish code are to share the
documents with others for teaching or demonstration, or to generate readable, external
documentation of your code. To create an interactive document that contains your code,
formatted content, and output together in the MATLAB Editor, see “Create Live Scripts”
on page 19-8.

This code demonstrates the Fourier series expansion for a square wave.

MATLAB Code with Markup Published Document

%% Square Waves from Sine Waves Square Waves from Sine Waves
] eries expansion for a squa:

The Fourer series expansion for a square-wave is made Up of 3 sum of odd harmonics, 3s shown
here using WATLAB®.

sum of odd harmonics, as sh

*% Add an Odd Harmonic and Plot It
t = 0:.1:pi%4;

¥ = =in(t);

plot(t,¥):

o 2 4 6 8 10 12 14

In each teration of the for loop add an ¥.s kincresses, a
square wave with increasing aceuracy.

for k= 3:2:9

Perform the following mathematical aperation at each ieration.

s
;
P s, AW g i, P

v=y+

To publish your code:

1 Create a MATLAB script or function. Divide the code into steps or sections by
inserting two percent signs (%%) at the beginning of each section.

2 Document the code by adding explanatory comments at the beginning of the file and
within each section.

23-4

Publishing MATLAB Code

Within the comments at the top of each section, you can add markup that enhances
the readability of the output. For example, the code in the preceding table includes
the following markup.

Titles %% Square Waves from Sine Waves
%% Add an Odd Harmonic and Plot It

%% Note About Gibbs Phenomenon

Variable name in % As _k_increases, ...
italics
LaTeX equation % $3 y = y + \frac{sin(k*t)}{k} 3

Note: When you have a file containing text that has characters in a different
encoding than that of your platform, when you save or publish your file, MATLAB
displays those characters as garbled text.

Publish the code. On the Publish tab, click Publish.

By default, MATLAB creates a subfolder named html, which contains an HTML file
and files for each graphic that your code creates. The HTML file includes the code,
formatted comments, and output. Alternatively, you can publish to other formats,
such as PDF files or Microsoft PowerPoint presentations. For more information on
publishing to other formats, see “Specify Output File” on page 23-28.

The sample code that appears in the previous figure is part of the installed
documentation. You can view the code in the Editor by running this command:

edit(fullfile(matlabroot, "help”, "techdoc”, "matlab_env",

"examples”, "fourier_demo2.m"))

See Also
publish

More About

“Options for Presenting Your Code” on page 23-2
“Publishing Markup” on page 23-7

23-5

23 Presenting MATLAB Code

. “Output Preferences for Publishing” on page 23-27

23-6

Publishing Markup

Publishing Markup

In this section...

“Markup Overview” on page 23-7

“Sections and Section Titles” on page 23-10
“Text Formatting” on page 23-11

“Bulleted and Numbered Lists” on page 23-12
“Text and Code Blocks” on page 23-13
“External File Content” on page 23-14
“External Graphics” on page 23-15

“Image Snapshot” on page 23-17

“LaTeX Equations” on page 23-18
“Hyperlinks” on page 23-20

“HTML Markup” on page 23-23

“LaTeX Markup” on page 23-24

Markup Overview

To insert markup, you can:

* Use the formatting buttons and drop-down menus on the Publish tab to format the
file. This method automatically inserts the text markup for you.

* Select markup from the Insert Text Markup list in the right click menu.

* Type the markup directly in the comments.

The following table provides a summary of the text markup options. Refer to this table
if you are not using the MATLAB Editor, or if you do not want to use the Publish tab to
apply the markup.

Note: When working with markup:

* Spaces following the comment symbols (%) often determine the format of the text that
follows.

23-7

23 Presenting MATLAB Code

+ Starting new markup often requires preceding blank comment lines, as shown in

examples.

* Markup only works in comments that immediately follow a section break.

Result in Output

Example of Corresponding File Markup

“Sections and Section Titles” on
page 23-10

%% SECTION TITLE
% DESCRIPTIVE TEXT

%%% SECTION TITLE WITHOUT SECTION BREAK
% DESCRIPTIVE TEXT

“Text Formatting” on page
23-11

% _ITALIC TEXT_
% *BOLD TEXT*

% |MONOSPACED TEXT]

% Trademarks:
% TEXT(TM)

% TEXT(R)

“Bulleted and Numbered Lists”
on page 23-12

%% Bulleted List

%

% * BULLETED ITEM 1
% * BULLETED ITEM 2
%

%% Numbered List

%

% # NUMBERED ITEM 1
% # NUMBERED ITEM 2
%

“Text and Code Blocks” on page
23-13

23-8

%%

%

% PREFORMATTED
% TEXT

%

%% MATLAB(R) Code
%
% for 1 = 1:10

Publishing Markup

Result in Output

Example of Corresponding File Markup

%
%
%

disp x
end

“External File Content” on page
23-14

%
%
%

<include>filename.m</include>

“External Graphics” on page
23-15

%
%
%

<<FILENAME.PNG>>

“Image Snapshot” on page
23-17

snapnow;

“LaTeX Equations” on page
23-18

%% Inline Expression

%

$xN2+e{\pi i}$

%% Block Equation

%
%
%

$$er{\pi i} + 1 = 0$3$

“Hyperlinks” on page 23-20

%

%

<http://www.mathworks.com MathWorks>

<matlab:FUNCTION DISPLAYED_TEXT>

“HTML Markup” on page
23-23

%
%
%
%
%
%
%

<html>

<table border=1><tr>
<td>one</td>
<td>two</td></tr></table>
</html>

“LaTeX Markup” on page
23-24

%% LaTeX Markup Example

%
%
%
%
%
%
%
%

<latex>
\begin{tabular}{|r|r|}
\hline n&SNIS\\

\hline 1&1\\ 2&2\\ 3&6\\
\hline

\end{tabular}

</latex>

23-9

23 Presenting MATLAB Code

Sections and Section Titles

Code sections allow you to organize, add comments, and execute portions of your code.
Code sections begin with double percent signs (%%) followed by an optional section title.
The section title displays as a top-level heading (h1 in HTML), using a larger, bold font.

Note: You can add comments in the lines immediately following the title. However, if you
want an overall document title, you cannot add any MATLAB code before the start of the
next section (a line starting with %%).

For instance, this code produces a polished result when published.

%% Vector Operations

% You can perform a number of binary operations on vectors.
%%
A 1:
B 4:
%% Dot Product

% A dot product of two vectors yields a scalar.

% MATLAB has a simple command for dot products.

s = dot(A,B);

%% Cross Product

% A cross product of two vectors yields a third

% vector perpendicular to both original vectors.

% Again, MATLAB has a simple command for cross products.
v = cross(A,B);

3;
6;

By saving the code in an Editor and clicking the Publish button on the Publish
tab, MATLAB produces the output as shown in this figure. Notice that MATLAB
automatically inserts a Contents menu from the section titles in the MATLAB file.

23-10

Publishing Markup

Vector Operations

You can perform a number of binary operations on vectors.

Contents

= Dot Product

m Cross Product

=
o

-
oo

Dot Product

A dot product of two vectors yields a scalar. MATLAB has a simple command for dot products.

3 = dot(&,B);

Cross Product

Across product of two vectors yields a third vector perpendicular to both original vectors. Again,
MATLAB has a simple command for cross products.

v = cross(d,B);

Text Formatting

You can mark selected text in the MATLAB comments so that they display in italic, bold,
or monospaced text when you publish the file. Simply surround the text with _, *, or | for
italic, bold, or monospaced text, respectively.

For instance, these lines display each of the text formatting syntaxes if published.

%% Calculate and Plot Sine Wave
% _Define_ the *range* for |x|

Calculate and Plot Sine Wave

Define the range for x

23-11

23 Presenting MATLAB Code

Trademark Symbols

If the comments in your MATLAB file include trademarked terms, you can include

text to produce a trademark symbol (™) or registered trademark symbol (®) in the
output. Simply add (R) or (TM) directly after the term in question, without any space in
between.

For example, suppose that you enter these lines in a file.
%% Basic Matrix Operations in MATLAB(R)

% This is a demonstration of some aspects of MATLAB(R)
% software and the Neural Network Toolbox(TM) software.

If you publish the file to HTML, it appears in the MATLAB web browser.

Basic Matrix Operations in MATLAB®

This is a demonstration of some aspects of MATLAB® software and the Neural
Metwork Toolbox™ software.

Bulleted and Numbered Lists

MATLAB allows bulleted and numbered lists in the comments. You can use this syntax
to produce bulleted and numbered lists.

%% Two Lists
%

% * ITEM1
% * ITEM2
%

% # ITEM1
% # ITEM2

%

Publishing the example code produces this output.

23-12

Publishing Markup

Two Lists

= [TEMA
m [TEMZ

1. ITEM1
2. ITEMZ2

Text and Code Blocks

Preformatted Text

Preformatted text appears in monospace font, maintains white space, and does not wrap
long lines. Two spaces must appear between the comment symbol and the text of the first
line of the preformatted text.

Publishing this code produces a preformatted paragraph.

%%
% Many people find monospaced texts easier to read:

% A dot product of two vectors yields a scalar.
% MATLAB has a simple command for dot products.

Many people find monospaced texts easier to read:

k dot product of two vectors yields a scalar.
MATIAR has & simple command for dot products.

Syntax Highlighted Sample Code

Executable code appears with syntax highlighting in published documents. You also can
highlight sample code. Sample code is code that appears within comments.

23-13

23 Presenting MATLAB Code

To indicate sample code, you must put three spaces between the comment symbol and the
start of the first line of code. For example, clicking the Code button on the Publish tab
inserts the following sample code in your Editor.

%%

%

% for 1 = 1:10
% disp(x)
% end

%

Publishing this code to HTML produces output in the MATLAB web browser.

for i = 1:10
disp (x)
end

External File Content

To add external file content into MATLAB published code, use the <include> markup.
Specify the external file path relative to the location of the published file. Included
MATLAB code files publish as syntax highlighted code. Any other files publish as plain
text.

For example, this code inserts the contents of sine_wave.m into your published output:

%% External File Content Example

% This example includes the file contents of sine_wave.m into published
% output.

%

% <include>sine wave.m</include>

%

% The file content above is properly syntax highlighted

Publish the file to HTML.

23-14

Publishing Markup

External File Content Example

This example includes the file contents of sine_wave.m into published output.

x = 0:1:6%pi;
v = 3in{x):
plot (%, ¥)
title('Sine Wave')
xlabel ('
ylabel('

The file content above is properly syniax highlighted

External Graphics

To publish an image that the MATLAB code does not generate, use text markup. By
default, MATLAB already includes code-generated graphics.

This code inserts a generic image called FILENAME . PNG into your published output.
%%

%

% <<FILENAME.PNG>>

%

MATLAB requires that FILENAME . PNG be a relative path from the output location to
your external image or a fully qualified URL. Good practice is to save your image in the
same folder that MATLAB publishes its output. For example, MATLAB publishes HTML
documents to a subfolder html. Save your image file in the same subfolder. You can
change the output folder by changing the publish configuration settings.

External Graphics Example Using surf(peaks)
This example shows how to insert surfpeaks. jpg into a MATLAB file for publishing.

To create the surfpeaks. jpg, run this code in the Command Window.

saveas(surf(peaks), "surfpeaks.jpg”);

To produce an HTML file containing surfpeaks. jpg from a MATLAB file:

23-15

23 Presenting MATLAB Code

1 Create a subfolder called html in your current folder.
2 Create surfpeaks. jpg by running this code in the Command Window.

saveas(surf(peaks), "html/surfpeaks.jpg”);
3 Publish this MATLAB code to HTML.

%% Image Example

% This is a graphic:
%

% <<surfpeaks.jpg>>
%

Image Example

This is a graphic:

50
40 40

30
20 20
10

Valid Image Types for Output File Formats

The type of images you can include when you publish depends on the output type of that
document as indicated in this table. For greatest compatibility, best practice is to use the
default image format for each output type.

23-16

Publishing Markup

Output File Format Default Inage Format |Types of Images You Can Include

doc png Any format that your installed version of
Microsoft Office supports.

html png All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

latex png or epsc2 All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

pdf bmp bmp and jpg.

ppt png Any format that your installed version of
Microsoft Office supports.

xml png All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

Image Snapshot

You can insert code that captures a snapshot of your MATLAB output. This is useful, for
example, if you have a for loop that modifies a figure that you want to capture after each
iteration.

The following code runs a For loop three times and produces output after every iteration.
The snapnow command captures all three images produced by the code.

%% Scale magic Data and Display as Image

for i=1:3
imagesc(magic(i))
snapnow;

end

If you publish the file to HTML, it resembles the following output. By default, the
images in the HTML are larger than shown in the figure. To resize images generated
by MATLAB code, use the Max image width and Max image height fields in the

23-17

23 Presenting MATLAB Code

Publish settings pane, as described in “Output Preferences for Publishing” on page
23-217.

Scale magic Data and Display as Image

for i=1:3
imagesc(magic({i))
SNApnoW;

end

LaTeX Equations

Inline LaTeX Expression

MATLAB enables you to include an inline LaTeX expression in any code that you intend
to publish. To insert an inline expression, surround your LaTeX markup with dollar sign
characters ($). The $ must immediately precede the first word of the inline expression,
and immediately follow the last word of the inline expression, without any space in
between.

Note:

+ All publishing output types support LaTeX expressions, except Microsoft PowerPoint.

* MATLAB publishing supports standard LaTeX math mode directives. Text mode
directives or directives that require additional packages are not supported.

This code contains a LaTeX expression:

23-18

Publishing Markup

%% LaTeX Inline Expression Example

%

% This is an equation: $x"2+e™{\pi i}$. It is
% inline with the text.

If you publish the sample text markup to HTML, this is the resulting output.

LaTeX Inline Expression Example

This is an equatian: x? Fe™ ltis inline with the text

LaTeX Display Equation

MATLAB enables you to insert LaTeX symbols in blocks that are offset from the main
comment text. Two dollar sign characters (3) on each side of an equation denote a
block LaTeX equation. Publishing equations in separate blocks requires a blank line in
between blocks.

This code is a sample text markup.

%% LaTeX Equation Example

%

% This is an equation:

%

% $$e{\pi i} + 1 = 0$3$

%

% It is not in line with the text.

If you publish to HTML, the expression appears as shown here.

23-19

23 Presenting MATLAB Code

23-20

LaTeX Equation Example

This is an equation:

[tis notin line with the text.

Hyperlinks
Static Hyperlinks

You can insert static hyperlinks within a MATLAB comment, and then publish the file
to HTML, XML, or Microsoft Word. When specifying a static hyperlink to a web location,
include a complete URL within the code. This is useful when you want to point the
reader to a web location. You can display or hide the URL in the published text. Consider
excluding the URL, when you are confident that readers are viewing your output online
and can click the hyperlink.

Enclose URLs and any replacement text in angled brackets.
%%

% For more information, see our web site:
% <http://www.mathworks.com MathWorks>

Publishing the code to HTML produces this output.

Faor more infarmation, see our Web site: Math\Woaorks

Eliminating the text MathWorks after the URL produces this modified output.

For more infoarmation, see our Web site: httpfwww. mathwaorks.com

Publishing Markup

Note: If your code produces hyperlinked text in the MATLAB Command Window, the
output shows the HTML code rather than the hyperlink.

Dynamic Hyperlinks

You can insert dynamic hyperlinks, which MATLAB evaluates at the time a reader
clicks that link. Dynamic hyperlinks enable you to point the reader to MATLAB code
or documentation, or enable the reader to run code. You implement these links using
matlab: syntax. If the code that follows the matlab: declaration has spaces in it,
replace them with %20.

Note: Dynamic links only work when viewing HTML in the MATLAB web browser.

Diverse uses of dynamic links include:

* “Dynamic Link to Run Code” on page 23-21
* “Dynamic Link to a File” on page 23-22
* “Dynamic Link to a MATLAB Function Reference Page” on page 23-22

Dynamic Link to Run Code

You can specify a dynamic hyperlink to run code when a user clicks the hyperlink. For
example, this matlab: syntax creates hyperlinks in the output, which when clicked
either enable or disable recycling:

%% Recycling Preference

% Click the preference you want:

%

% <matlab:recycle("off") Disable recycling>
%

% <matlab:recycle("on") Enable recycling>

The published result resembles this HTML output.

23-21

23 Presenting MATLAB Code

23-22

Recycling Preference

Click the preference you want:

Disable recycling

When you click one of the hyperlinks, MATLAB sets the recycle command accordingly.
After clicking a hyperlink, run recycle in the Command Window to confirm that the
setting is as you expect.

Dynamic Link to a File

You can specify a link to a file that you know is in the matlabroot of your reader. You
do not need to know where each reader installed MATLAB. For example, link to the
function code for publish.

%%

% See the

% <matlab:edit(fullfile(matlabroot, "toolbox", *matlab®, "codetools”, "publish.m")) code>
% for the publish function.

Next, publish the file to HTML.

When you click the code link, the MATLAB Editor opens and displays the code for the
publish function. On the reader's system, MATLAB issues the command (although the
command does not appear in the reader's Command Window).

Dynamic Link to a MATLAB Function Reference Page

You can specify a link to a MATLAB function reference page using matlab: syntax. For
example, suppose that your reader has MATLAB installed and running. Provide a link to
the publish reference page.

Publishing Markup

%%
% See the help for the <matlab:doc("publish®) publish> function.

Publish the file to HTML.

See the help for the publish function.

When you click the publish hyperlink, the MATLAB Help browser opens and displays
the reference page for the publ ish function. On the reader's system, MATLAB issues
the command, although the command does not appear in the Command Window.

HTML Markup

You can insert HTML markup into your MATLAB file. You must type the HTML markup
since no button on the Publish tab generates it.

Note: When you insert text markup for HTML code, the HTML code publishes only when
the specified output file format is HTML.

This code includes HTML tagging.

%% HTML Markup Example

% This is a table:

%

% <html>

% <table border=1><tr><td>one</td><td>two</td></tr>
% <tr><td>three</td><td>four</td></tr></table>

% </html>

%

If you publish the code to HTML, MATLAB creates a single-row table with two columns.
The table contains the values one, two, three, and four.

23-23

23 Presenting MATLAB Code

23-24

HTML Markup Example

This is atable:

ane twao

three four

If a section produces command-window output that starts with <html> and ends with
</html>, MATLAB includes the source HTML in the published output. For example,
MATLAB displays the disp command and makes a table from the HTML code if you
publish this code:

disp("<html><table><tr><td>1</td><td>2</td></tr></table></html>")

disp("<html><tablex<tr><td>1l</td><td>2</cd></ >/ table></html>"}

LaTeX Markup

You can insert LaTeX markup into your MATLAB file. You must type all LaTeX markup
since no button on the Publish tab generates it.

Note: When you insert text markup for LaTeX code, that code publishes only when the
specified output file format is LaTeX.

This code is an example of LaTeX markup.

Publishing Markup

%% LaTeX Markup Example
% This is a table:

%

% <latex>

% \begin{tabular}{]c|c|} \hline
% n & $n1$ \\ \hline
% 1 & 1 \\

% 2 & 2 \\

% 3 & 6 \\ \hline

% \end{tabular}

% </latex>

If you publish the file to LaTeX, then the Editor opens a new .tex file containing the

LaTeX markup.

% This LaTeX was auto-generated from MATLAB code.

% To make changes, update the MATLAB code and republish this document.

\documentclass{article}
\usepackage{graphicx}
\usepackage{color}

\sloppy
\definecolor{lightgray}{gray}{0.5}
\setlength{\parindent}{0pt}

\begin{document}

\section*{LaTeX Markup Example}

\begin{par}

This is a table:
\end{par} \vspace{lem}
\begin{par}

\begin{tabular}{|c|c|} \hline
n & $n1$ \\ \hline

1&1\\

2 & 2\\

3 & 6 \\ \hline
\end{tabular}

23-25

23 Presenting MATLAB Code

\end{par} \vspace{lem}

\end{document}

MATLAB includes any additional markup necessary to compile this file with a LaTeX
program.

More About

“Options for Presenting Your Code” on page 23-2
. “Publishing MATLAB Code” on page 23-4

“Output Preferences for Publishing” on page 23-27

23-26

Output Preferences for Publishing

Output Preferences for Publishing

In this section...

“How to Edit Publishing Options” on page 23-27

“Specify Output File” on page 23-28

“Run Code During Publishing” on page 23-29

“Manipulate Graphics in Publishing Output” on page 23-31
“Save a Publish Setting” on page 23-36

“Manage a Publish Configuration” on page 23-37

How to Edit Publishing Options

Use the default publishing preferences if your code requires no input arguments and
you want to publish to HTML. However, if your code requires input arguments, or if you
want to specify output settings, code execution, or figure formats, then specify a custom

configuration.

1 Locate the Publish tab and click the Publish button arrow -.

Puklish

-

Publish: sine_wave_f_2

Publish: sine_wave_f_3

Edit Publishing Options...
2 Select Edit Publishing Options.

The Edit Configurations dialog box opens. Specify output preferences.

23-27

23 Presenting MATLAB Code

sine_wave_f.m

%| Publish configuration name: |sine_wave f 2

Fisine_wave._f.m
%] sine_wave_f2
ﬂ sine_wave_f_3

MATLAE expression:

% Example

4 [m] »

L] foo(a)

Publish settings: | User Default (modified) -

El Output settings
Qutput file fermat html
Qutput folder H:\Documents\MATLAB html
XSL file
E Figure settings
Figure capture method entireGUIWindow
Image Format default (png)

Use new figure true
® Max image width (pixels) 400
® Maximage height (pixels) 400
Create thumbnail true

El Code settings
Include code true
Evaluate code true

Catch error true

Max # of output lines Inf

[+)=]

[Close |[publsh |[Help |

The MATLAB expression pane specifies the code that executes during publishing. The
Publish settings pane contains output, figure, and code execution options. Together,
they make what MATLAB refers to as a publish configuration. MATLAB associates each
publish configuration with an .m file. The name of the publish configuration appears in

the top left pane.

Specify Output File

You specify the output format and location on the Publish settings pane.

MATLAB publishes to these formats.

Format Notes

html Publishes to an HTML document. You can use an Extensible
Stylesheet Language (XSL) file.

xml Publishes to XML document. You can use an Extensible Stylesheet
Language (XSL) file.

latex Publishes to LaTeX document. Does not preserve syntax highlighting.
You can use an Extensible Stylesheet Language (XSL) file.

23-28

Output Preferences for Publishing

Format Notes

doc Publishes to a Microsoft Word document. Does not preserve syntax
highlighting. This format is only available on Windows platforms.

ppt Publishes to a Microsoft PowerPoint document. Does not preserve
syntax highlighting. This format is only available on Windows
platforms.

pdf Publishes to a PDF document.

Note: XSL files allow you more control over the appearance of the output document. For
more details, see http://docbook.sourceforge.net/release/xsl/current/doc/.

Run Code During Publishing

+ “Specifying Code” on page 23-29

+ “Evaluating Code” on page 23-30

* “Including Code” on page 23-30

* “Catching Errors” on page 23-31

+ “Limiting the Amount of Output” on page 23-31

Specifying Code

By default, MATLAB executes the .m file that you are publishing. However, you can
specify any valid MATLAB code in the MATLAB expression pane. For example,

if you want to publish a function that requires input, then run the command
function(input). Additional code, whose output you want to publish, appears after
the functions call. If you clear the MATLAB expression area, then MATLAB publishes
the file without evaluating any code.

Note: Publish configurations use the base MATLAB workspace. Therefore, a variable in
the MATLAB expression pane overwrites the value for an existing variable in the base
workspace.

23-29

http://docbook.sourceforge.net/release/xsl/current/doc/

23 Presenting MATLAB Code

23-30

Evaluating Code

Another way to affect what MATLAB executes during publishing is to set the Evaluate
code option in the Publish setting pane. This option indicates whether MATLAB
evaluates the code in the .m file that is publishing. If set to true, MATLAB executes the
code and includes the results in the output document.

Because MATLAB does not evaluate the code nor include code results when you set the
Evaluate code option to false, there can be invalid code in the file. Therefore, consider
first running the file with this option set to true.

For example, suppose that you include comment text, Label the plot, in a file, but
forget to preface it with the comment character. If you publish the document to HTML,
and set the Evaluate code option to true, the output includes an error.

Modify Plot Properties

Label the plot
ticle('Sine Wave', 'FontWeight', 'bold')
xlabel ("x")

ylabel ("=sin(x) ")

set (gca, 'Color', W'
get (gcf, 'MenuBar', 'none')
? Undefined function or method 'Label' for input arguments of type 'char'.

Use the false option to publish the file that contains the publ ish function. Otherwise,
MATLAB attempts to publish the file recursively.

Including Code

You can specify whether to display MATLAB code in the final output. If you set the
Include code option to true, then MATLAB includes the code in the published output
document. If set to False, MATLAB excludes the code from all output file formats,
except HTML.

If the output file format is HTML, MATLAB inserts the code as an HTML comment that
is not visible in the web browser. If you want to extract the code from the output HTML
file, use the MATLAB grabcode function.

Output Preferences for Publishing

For example, suppose that you publish H:/my matlabfiles/my mfiles/
sine_wave.m to HTML using a publish configuration with the Include code option set
to False. If you share the output with colleagues, they can view it in a web browser. To
see the MATLAB code that generated the output, they can issue the following command
from the folder containing sine_wave.html:

grabcode("sine_wave.html*™)
MATLAB opens the file that created sine_wave.html in the Editor.

Catching Errors

You can catch and publish any errors that occur during publishing. Setting the Catch
error option to true includes any error messages in the output document. If you set
Catch error to false, MATLAB terminates the publish operation if an error occurs
during code evaluation. However, this option has no effect if you set the Evaluate code
property to False.

Limiting the Amount of Output

You can limit the number of lines of code output that is included in the output document
by specifying the Max # of output lines option in the Publish settings pane. Setting
this option is useful if a smaller, representative sample of the code output suffices.

For example, the following loop generates 100 lines in a published output unless Max #
of output lines is set to a lower value.

for n = 1:100

disp(x)
end;

Manipulate Graphics in Publishing Output

* “Choosing an Image Format” on page 23-31

+ “Setting an Image Size” on page 23-32

+ “Capturing Figures” on page 23-33

+ “Specifying a Custom Figure Window” on page 23-33
+ “Creating a Thumbnail” on page 23-35

Choosing an Image Format

When publishing, you can choose the image format that MATLAB uses to store any
graphics generated during code execution. The available image formats in the drop-

23-31

23 Presenting MATLAB Code

23-32

down list depend on the setting of the Figure capture method option. For greatest
compatibility, select the default as specified in this table.

Output File Format

Default Inage Format

Types of Images You Can Include

doc

png

Any format that your installed version of
Microsoft Office supports.

html

png

All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

latex

png or epsc2

All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

pdf

bmp

bmp and jpg.

ppt

png

Any format that your installed version of
Microsoft Office supports.

xml

png

All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

Setting an Image Size

You set the size of MATLAB generated images in the Publish settings pane on the
Edit Configurations dialog window. You specify the image size in pixels to restrict the
width and height of images in the output. The pixel values act as a maximum size value
because MATLAB maintains an image’s aspect ratio. MATLAB ignores the size setting

for the following cases:

* When working with external graphics as described in “External Graphics” on page

23-15

* When using vector formats, such as .eps

* When publishing to . pdf

Output Preferences for Publishing

Capturing Figures

You can capture different aspects of the Figure window by setting the Figure capture
method option. This option determines the window decorations (title bar, toolbar, menu
bar, and window border) and plot backgrounds for the Figure window.

This table summarizes the effects of the various Figure capture methods.

Use This Figure Capture To Get Figure Captures with These Appearance Details
Window Decorations Plot Backgrounds
entireGUIWindow Included for dialog boxes; Excluded |Set to white for figures; matches
for figures the screen for dialog boxes
Excluded for dialog boxes and Set to white
figures
getframe Excluded for dialog boxes and Matches the screen plot
figures background
entireFigureWindow Included for dialog boxes and Matches the screen plot
figures background

Note: Typically, MATLAB figures have the HandleVisibi lity property set to

on. Dialog boxes are figures with the HandleVisibility property set to off or
callback. If your results are different from the results listed in the preceding table, the
HandleVisibility property of your figures or dialog boxes might be atypical. For more
information, see HandleVisibility.

Specifying a Custom Figure Window

MATLAB allows you to specify custom appearance for figures it creates. If the Use new
figure option in the Publish settings pane is set to true, then in the published output,
MATLAB uses a Figure window at the default size and with a white background. If the
Use new figure option is set to False, then MATLAB uses the properties from an open
Figure window to determine the appearance of code-generated figures. This preference
does not apply to figures included using the syntax in “External Graphics” on page 23-15.

Use the following code as a template to produce Figure windows that meet your needs.

% Create figure

23-33

23 Presenting MATLAB Code

figurel = figure(“Name", "purple_background®, ...
"Color",[0.4784 0.06275 0.8941]);
colormap(“hsv®);

% Create subplot

subplot(1,1,1, "Parent”,figurel);
box(“on*®);

% Create axis labels

xlabel ("x-axis");
ylabel({"y-axis"})

% Create title
title{"Title"});

% Enable printed output to match colors on screen
set(figurel, " InvertHardcopy”®, "off")

23-34

Output Preferences for Publishing

By publishing your file with this window open and the Use new figure option set to
false, any code-generated figure takes the properties of the open Figure window.

Note: You must set the Figure capture method option to entireFigureWindow for
the final published figure to display all the properties of the open Figure window.

Creating a Thumbnail
You can save the first code-generated graphic as a thumbnail image. You can use this

thumbnail to represent your file on HTML pages. To create a thumbnail, follow these
steps:

23-35

23 Presenting MATLAB Code

23-36

1 On the Publish tab, click the Publish button drop-down arrow = and select Edit
Publishing Options. The Edit Configurations dialog box opens.

2 Set the Image Format option to a bitmap format, such as .png or . jpg. MATLAB
creates thumbnail images in bitmap formats.

3 Set the Create thumbnail option to true.

MATLAB saves the thumbnail image in the folder specified by the Output folder
option in the Publish settings pane.

Save a Publish Setting

You can save your publish settings, which allows you to reproduce output easily. It can be
useful to save your commonly used publish settings.

Publish settings: | User Default {modified) LI Save As... |

B putput settings

Output file format il
® Qutput folder Liymy_MATLAB_files\my_published_files
%5L file

B Figure settings
® Figure capture method getframe
Image Format default (png)
IUse new figure true
Max image width (pixels) | Inf
Max image height (pixels) Inf

Create thumbnail true
B Code settings
Indude code true
Evaluate code true
& Catch error falze
Max # of output lines Inf

When the Publish settings options are set, you can follow these steps to save the
settings:

Output Preferences for Publishing

1 Click Save As when the options are set in the manner you want.

The Save Publish Settings As dialog box opens and displays the names of all the
currently defined publish settings. By default the following publish settings install
with MATLAB:

Factory Default
You cannot overwrite the Factory Default and can restore them by selecting

Factory Default from the Publish settings list.

User Default

Initially, User Default settings are identical to the Factory Default
settings. You can overwrite the User Default settings.

2 In the Settings Name field, enter a meaningful name for the settings. Then click
Save.

You can now use the publish settings with other MATLAB files.

You also can overwrite the publishing properties saved under an existing name.
Select the name from the Publish settings list, and then click Overwrite.

Manage a Publish Configuration

* “Running an Existing Publish Configuration” on page 23-38
+ “Creating Multiple Publish Configurations for a File” on page 23-38
+ “Reassociating and Renaming Publish Configurations” on page 23-39

+ “Using Publish Configurations Across Different Systems” on page 23-40

Together, the code in the MATLAB expression pane and the settings in the Publish
settings pane make a publish configuration that is associated with one file. These
configurations provide a simple way to refer to publish preferences for individual files.

To create a publish configuration, click the Publish button drop-down arrow = on the
Publish tab, and select Edit Publishing Options. The Edit Configurations dialog box
opens, containing the default publish preferences. In the Publish configuration name
field, type a name for the publish configuration, or accept the default name. The publish
configuration saves automatically.

23-37

23 Presenting MATLAB Code

23-38

Running an Existing Publish Configuration

After saving a publish configuration, you can run it without opening the Edit
Configurations dialog box:

1

Click the Publish button drop-down arrow = If you position your mouse pointer on
a publish configuration name, MATLAB displays a tooltip showing the MATLAB
expression associated with the specific configuration.

Select a configuration name to use for the publish configuration. MATLAB publishes
the file using the code and publish settings associated with the configuration.

Creating Multiple Publish Configurations for a File

You can create multiple publish configurations for a given file. You might do this to
publish the file with different values for input arguments, with different publish setting
property values, or both. Create a named configuration for each purpose, all associated
with the same file. Later you can run whichever particular publish configuration you
want.

Use the following steps as a guide to create new publish configurations.

Open a file in your Editor.

Click the Publish button drop-down arrow, and select Edit Publishing Options.
The Edit Configurations dialog box opens.

Click the Add button + located on the left pane.

A new name appears on the configurations list, filename_n, where the value of n
depends on the existing configuration names.

Output Preferences for Publishing

sine_wave_f.m x

I sine_wawe_f.m
g] cine_wave f

ﬂ sine_wave_f_2
ﬂ sine_wave_f 3

()= ?

4 If you modify settings in the MATLAB expression or Publish setting pane,
MATLAB automatically saves the changes.

Reassociating and Renaming Publish Configurations

Each publish configuration is associated with a specific file. If you move or rename
a file, redefine its association. If you delete a file, consider deleting the associated
configurations, or associating them with a different file.

When MATLAB cannot associate a configuration with a file, the Edit Configurations

dialog box displays the file name in red and a File Not Found message. To reassociate a

configuration with another file, perform the following steps.

1 Click the Clear search button '™ on the left pane of the Edit Configurations dialog
box.

2 Select the file for which you want to reassociate publish configurations.

3 In the right pane of the Edit Configurations dialog box, click Choose.... In the Open
dialog box, navigate to and select the file with which you want to reassociate the
configurations.

You can rename the configurations at any time by selecting a configuration from the list
in the left pane. In the right pane, edit the value for the Publish configuration name.

23-39

23 Presenting MATLAB Code

23-40

Note: To run correctly after a file name change, you might need to change the code
statements in the MATLAB expression pane. For example, change a function call to
reflect the new file name for that function.

Using Publish Configurations Across Different Systems

Each time you create or save a publish configuration using the Edit Configurations
dialog box, the Editor updates the publish_configurations.m file in your preferences
folder. (This is the folder that MATLAB returns when you run the MATLAB prefdir
function.)

Although you can port this file from the preferences folder on one system to another, only
one publish_configurations.m file can exist on a system. Therefore, only move the
file to another system if you have not created any publish configurations on the second
system. In addition, because the publish_configurations.m file might contain
references to file paths, be sure that the specified files and paths exist on the second
system.

MathWorks recommends that you not update publish_configurations.min the
MATLAB Editor or a text editor. Changes that you make using tools other than the Edit
Configurations dialog box might be overwritten later.

More About

. “Options for Presenting Your Code” on page 23-2
. “Publishing MATLAB Code” on page 23-4
. “Publishing Markup” on page 23-7

Create a MATLAB Notebook with Microsoft Word

Create a MATLAB Notebook with Microsoft Word

In this section...

“Getting Started with MATLAB Notebooks” on page 23-41

“Creating and Evaluating Cells in a MATLAB Notebook” on page 23-43
“Formatting a MATLAB Notebook” on page 23-48

“Tips for Using MATLAB Notebooks” on page 23-50

“Configuring the MATLAB Notebook Software” on page 23-51

Getting Started with MATLAB Notebooks

Note: notebook will be removed in a future version. Use the Live Editor on page 19-2
instead.

You can use the notebook function to open Microsoft Word and record MATLAB
sessions to supplement class notes, textbooks, or technical reports. After executing

the notebook function, you run MATLAB commands directly from Word itself. This
Word document is known as a MATLAB Notebook. As an alternative, consider using the
MATLAB publish function.

Using the notebook command, you create a Microsoft Word document. You then can
type text, input cells (MATLAB commands), and output cells (results of MATLAB
commands) directly into this document. You can format the input in the same manner
as any Microsoft Word document. You can think of this document as a record of an
interactive MATLAB session annotated with text, or as a document embedded with live
MATLAB commands and output.

Note: The notebook command is available only on Windows systems that have a 32-bit
version of Microsoft Word installed. The notebook command is not available for 64—bit
versions of Microsoft Word.

Creating or Opening a MATLAB Notebook

If you are running the notebook command for the first time since you installed a new
version of MATLAB, follow the instructions in “Configuring the MATLAB Notebook

23-41

23 Presenting MATLAB Code

23-42

Software” on page 23-51. Otherwise, you can create a new or open an existing
notebook:

To open a new notebook, execute the notebook function in the MATLAB Command
Window.

The notebook command starts Microsoft Word on your system and creates a
MATLAB Notebook, called Documentl. If a dialog box appears asking you to enable
or disable macros, choose to enable macros.

Word adds the Notebook menu to the Word Add-Ins tab, as shown in the following
figure.

@ Documentl [Compatibility Maode] - Microsoft Word
Home Insert Page Layout Referances Mailings Review View MathType Add-Ins Acrobat
Notebook =
,533, Mew MATLAE Motebook
,53.:_, About MATLAE Motebook

Menu Commands

H9-008 s

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

To open an existing notebook, execute notebook file name in the MATLAB
Command Window, where file name is the name of an existing MATLAB notebook.

Converting a Word Document to a MATLAB Notebook

To convert a Microsoft Word document to a MATLAB Notebook, insert the document into
a notebook file:

hw N—

Create a MATLAB Notebook.

From the Insert tab, in the Text group, click the arrow next to r"ﬂObject.

Select Text from File. The Insert File dialog box opens.

Navigate and select the Word file that you want to convert in the Insert File dialog
box.

Running Commands in a MATLAB Notebook

You enter MATLAB commands in a notebook the same way you enter text in any other
Word document. For example, you can enter the following text in a Word document. The
example uses text in Courier Font, but you can use any font:

Create a MATLAB Notebook with Microsoft Word

Here is a sample MATLAB Notebook.
a = magic(3)

Execute a single command by pressing Crtl+Enter on the line containing the MATLAB
command. Execute a series of MATLAB commands using these steps:

1 Highlight the commands you want to execute.
2 Click the Notebook drop-down list on the Add-Ins tab.
3 Select Evaluate Cell.

MATLAB displays the results in the Word document below the original command or
series of commands.

Note A good way to experiment with MATLAB Notebook is to open a sample notebook,
Readme.doc. You can find this file in the matlabroot/notebook/pc folder.

Creating and Evaluating Cells in a MATLAB Notebook

+ “Creating Input Cells” on page 23-43

+ “Evaluating Input Cells” on page 23-45
+ “Undefining Cells” on page 23-47

+ “Defining Calc Zones” on page 23-47

Creating Input Cells

Input cells allow you to break up your code into manageable pieces and execute them
independently. To define a MATLAB command in a Word document as an input cell:

1 Type the command into the MATLAB Notebook as text. For example,
This is a sample MATLAB Notebook.

a = magic(3)

2 Position the cursor anywhere in the command, and then select Define Input Cell
from the Notebook drop-down list. If the command is embedded in a line of text, use
the mouse to select it. The characters appear within cell markers ([]). Cell markers
are bold, gray brackets. They differ from the brackets used to enclose matrices by
their size and weight.

23-43

23 Presenting MATLAB Code

23-44

[a = magic(3)]

Creating Autoinit Input Cells
Autoinit cells are identical to input cells with additional characteristics:

+ Autoinit cells evaluate when MATLAB Notebook opens.

+ Commands in autoinit cells display in dark blue characters.

To create an autoinit cell, highlight the text, and then select Define Autolnit Cell from
the Notebook drop-down list.

Creating Cell Groups

You can collect several input cells into a single input cell, called a cell group. All the
output from a cell group appears in a single output cell immediately after the group. Cell
groups are useful when you need several MATLAB commands to execute in sequence.
For instance, defining labels and tick marks in a plot requires multiple commands:

X = -pi:0.1:pi;

plot(x,cos(x))

title("Sample Plot*)

xlabel ("x*)

ylabel ("cos(x) ")

set(gca, "XTick",-pi:pi:pi)

set(gca, "XTickLabel " ,{"-pi~, 0", "pi~})

To create a cell group:

1 Use the mouse to select the input cells that are to make up the group.
2 Select Group Cells from the Notebook drop-down list.

A single pair of cell markers now surrounds the new cell group.

[Xx = -pi:0.1:pi;

plot(x,cos(x))

title("Sample Plot*)

xlabel ("x*)

ylabel ("cos(x) ")

set(gca, "XTick",-pi:pi:pi)

set(gca, "XTickLabel* ,{"-pi", 0", "pi"}P]

When working with cell groups, you should note several behaviors:

Create a MATLAB Notebook with Microsoft Word

* A cell group cannot contain output cells. If the selection includes output cells, they are
deleted.

* A cell group cannot contain text. If the selection includes text, the text appears after
the cell group, unless it precedes the first input cell in the selection.

+ If you select part or all of an output cell, the cell group includes the respective input
cell.

+ If the first line of a cell group is an autoinit cell, then the entire group is an autoinit
cell.

Evaluating Input Cells

After you define a MATLAB command as an input cell, you can evaluate it in your
MATLAB Notebook using these steps:

1 Highlight or place your cursor in the input cell you want to evaluate.
2 Select Evaluate Cell in the Notebook drop-down list, or press Ctrl+Enter.

The notebook evaluates and displays the results in an output cell immediately
following the input cell. If there is already an output cell, its contents update
wherever the output cell appears in the notebook. For example:

This is a sample MATLAB Notebook.

[a
[a

magic(3)]

N~NO

8 1
3 5
4 9 1

To evaluate more than one MATLAB command contained in different, but contiguous
input cells:

1 Select a range of cells that includes the input cells you want to evaluate. You can
include text that surrounds input cells in your selection.
2 Select Evaluate Cell in the Notebook drop-down list or press Ctrl+Enter.

Note Text or numeric output always displays first, regardless of the order of the
commands in the group.

23-45

23 Presenting MATLAB Code

When each input cell evaluates, new output cells appear or existing ones are replaced.
Any error messages appear in red, by default.

Evaluating Cell Groups

Evaluate a cell group the same way you evaluate an input cell (because a cell group is an
input cell):

1 Position the cursor anywhere in the cell or in its output cell.
2 Select Evaluate Cell in the Notebook drop-down list or press Ctrl+Enter.

When MATLAB evaluates a cell group, the output for all commands in the group appears
in a single output cell. By default, the output cell appears immediately after the cell
group the first time the cell group is evaluated. If you evaluate a cell group that has an
existing output cell, the results appear in that output cell, wherever it is located in the
MATLAB Notebook.

Using a Loop to Evaluate Input Cells Repeatedly

MATLAB allows you to evaluate a sequence of MATLAB commands repeatedly, using
these steps:

1 Highlight the input cells, including any text or output cells located between them.
2 Select Evaluate Loop in the Notebook drop-down list. The Evaluate Loop dialog
box appears.

Evaluate Loop 2 e

Loop count: i]

Stop after: 10

Loop speed: Slower

Close

e 4

Microsoft product screen shot reprinted with permission from Microsoft Corporation.
3 Enter the number of times you want to evaluate the selected commands in the Stop

After field, then click Start. The button changes to Stop. Command evaluation

begins, and the number of completed iterations appears in the Loop Count field.

23-46

Create a MATLAB Notebook with Microsoft Word

You can increase or decrease the delay at the end of each iteration by clicking Slower or
Faster.

Evaluating an Entire MATLAB Notebook

To evaluate an entire MATLAB Notebook, select Evaluate MATLAB Notebook in the
Notebook drop-down list. Evaluation begins at the top of the notebook, regardless of
the cursor position and includes each input cell in the file. As it evaluates the file, Word
inserts new output cells or replaces existing output cells.

If you want to stop evaluation if an error occurs, set the Stop evaluating on error
check box on the Notebook Options dialog box.

Undefining Cells

You can always convert cells back to normal text. To convert a cell (input, output, or a
cell group) to text:

1 Highlight the input cell or position the cursor in the input cell.
2 Select Undefine Cells from the Notebook drop-down list.

When the cell converts to text, the cell contents reformat according to the Microsoft Word
Normal style.

Note

+ Converting input cells to text also converts their output cells.

+ If the output cell is graphical, the cell markers disappear and the graphic dissociates
from its input cell, but the contents of the graphic remain.

Defining Calc Zones

You can partition a MATLAB Notebook into self-contained sections, called calc zones. A
calc zone is a contiguous block of text, input cells, and output cells. Section breaks appear
before and after the section, defining the calc zone. The section break indicators include
bold, gray brackets to distinguish them from standard Word section breaks.

You can use calc zones to prepare problem sets, making each problem a calc zone that
you can test separately. A notebook can contain any number of calc zones.

23-47

23 Presenting MATLAB Code

Note Calc zones do not affect the scope of the variables in a notebook. Variables defined
in one calc zone are accessible to all calc zones.

Creating a Calc Zone

1 Select the input cells and text you want to include in the calc zone.
2 Select Define Calc Zone under the Notebook drop-down list.

A calc zone cannot begin or end in a cell.

Evaluating a Calc Zone

1 Position the cursor anywhere in the calc zone.
2 Select Evaluate Calc Zone from the Notebook drop-down list or press Alt+Enter.

By default, the output cell appears immediately after the calc zone the first time you
evaluate the calc zone. If you evaluate a calc zone with an existing output cell, the results
appear in the output cell wherever it is located in the MATLAB Notebook.

Formatting a MATLAB Notebook

+ “Modifying Styles in the MATLAB Notebook Template” on page 23-48
* “Controlling the Format of Numeric Output” on page 23-49
+ “Controlling Graphic Output” on page 23-49

Modifying Styles in the MATLAB Notebook Template

You can control the appearance of the text in your MATLAB Notebook by modifying
the predefined styles in the notebook template, m—-book .dot. These styles control the
appearance of text and cells.

This table describes MATLAB Notebook default styles. For general information about
using styles in Microsoft Word documents, see the Microsoft Word documentation.

Style Font Size Weight Color
Normal Times New 10 points N/A Black
Roman®

23-48

Create a MATLAB Notebook with Microsoft Word

Style Font Size Weight Color
Autolnit Courier New 10 points Bold Dark blue
Error Courier New 10 points Bold Red

Input Courier New 10 points Bold Dark green
Output Courier New 10 points N/A Blue

When you change a style, Word applies the change to all characters in the notebook

that use that style and gives you the option to change the template. Be cautious about
changing the template. If you choose to apply the changes to the template, you affect all
new notebooks that you create using the template. See the Word documentation for more
information.

Controlling the Format of Numeric Output
To change how numeric output displays, select Notebook Options from the Notebook

drop-down list. The Notebook Options dialog box opens, containing the Numeric format
pane.

Mumeric format

Format: |Shortg ﬂ

(¥ |pose

" Compact

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

You can select a format from the Format list. Format choices correspond to the same
options available with the MATLAB format command.

The Loose and Compact settings control whether a blank line appears between the
input and output cells. To suppress this blank line, select Compact.

Controlling Graphic Output
MATLAB allows you to embed graphics, suppress graphic output and adjust the graphic

size.

23-49

23 Presenting MATLAB Code

23-50

By default, MATLAB embeds graphic output in a Notebook. To display graphic output in
a separate figure window, click Notebook Options from the Notebook drop-down list.
The Notebook Options dialog box opens, containing the Figure options pane.

Figure options
[+ Embed figures in MATLAE Motebook

Units: |Inn:hes ﬂ
width: |4
Height: | 3.5

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

From this pane, you can choose whether to embed figures in the MATLAB Notebook. You
can adjust the height and width of the figure in inches, centimeters, or points.

Note Embedded figures do not include graphics objects generated by the uicontrol and
uimenu functions.

To prevent an input cell from producing a figure, select Toggle Graph Output for Cell
from the Notebook drop-down list. The text (no graph) appears after the input cell
and the input cell does not produce a graph if evaluated. To undo the figure suppression,
select Toggle Graph Output for Cell again or delete the text (no graph).

Note Toggle Graph Output for Cell overrides the Embed figures in MATLAB
Notebook option, if that option is set.

Tips for Using MATLAB Notebooks
Protecting the Integrity of Your Workspace in MATLAB Notebooks

If you work on more than one MATLAB Notebook in a single word-processing session,
notice that

Create a MATLAB Notebook with Microsoft Word

* Each notebook uses the same MATLAB executable.

+ All notebooks share the same workspace. If you use the same variable names in more
than one notebook, data used in one notebook can be affected by another notebook.

Note: You can protect the integrity of your workspace by specifying the clear command
as the first autoinit cell in the notebook.

Ensuring Data Consistency in MATLAB Notebooks

You can think of a MATLAB Notebook as a sequential record of a MATLAB session.
When executed in sequential order, the notebook accurately reflects the relationships
among the commands.

If, however, you edit input cells or output cells as you refine your notebook, it can contain
inconsistent data. Input cells that depend on the contents or the results of other cells do
not automatically recalculate when you make a change.

When working in a notebook, consider selecting Evaluate MATLAB Notebook
periodically to ensure that your notebook data is consistent. You can also use calc zones
to isolate related commands in a section of the notebook, and then use Evaluate Cale
Zone to execute only those input cells contained in the calc zone.

Debugging and MATLAB Notebooks

Do not use debugging functions or the Editor while evaluating cells within a MATLAB
Notebook. Instead, use this procedure:

1 Complete debugging files from within MATLAB.
2 Clear all the breakpoints.
3 Access the file using notebook.

If you debug while evaluating a notebook, you can experience problems with MATLAB.

Configuring the MATLAB Notebook Software

After you install MATLAB Notebook software, but before you begin using it, specify
that Word can use macros, and then configure the notebook command. The notebook
function installs as part of the MATLAB installation process on Microsoft Windows
platforms. For more information, see the MATLAB installation documentation.

23-51

23 Presenting MATLAB Code

Note: Word explicitly asks whether you want to enable macros. If it does not, refer to the
Word help. You can search topics relating to macros, such as “enable or disable macros”.

To configure MATLAB Notebook software, type the following in the MATLAB Command
Window:

notebook -setup

MATLAB configures the Notebook software and issues these messages in the Command
Window:

Welcome to the utility for setting up the MATLAB Notebook
for interfacing MATLAB to Microsoft Word

Setup complete
When MATLAB configures the software, it:

1 Accesses the Microsoft Windows system registry to locate Microsoft Word and the
Word templates folder. It also identifies the version of Word.

2 Copies the m-book.dot template to the Word templates folder.
The MATLAB Notebook software supports Word versions 2002, 2003, 2007, and 2010.

After you configure the software, typing notebook in the MATLAB Command Window
starts Microsoft Word and creates a new MATLAB Notebook.

If you suspect a problem with the current configuration, you can explicitly reconfigure
the software by typing:

notebook -setup

More About

. “Options for Presenting Your Code” on page 23-2
. “Publishing MATLAB Code” on page 23-4

23-52

Coding and Productivity Tips

* “Open and Save Files” on page 24-2

* “Check Code for Errors and Warnings” on page 24-6

* “Improve Code Readability” on page 24-21

* “Find and Replace Text in Files” on page 24-28

* “Go To Location in File” on page 24-33

* “Display Two Parts of a File Simultaneously” on page 24-38
+ “Add Reminders to Files” on page 24-41

+ “MATLAB Code Analyzer Report” on page 24-44

24 Coding and Productivity Tips

Open and Save Files

In this section...

“Open Existing Files” on page 24-2
“Save Files” on page 24-3

Open Existing Files

To open an existing file or files in the Editor, choose the option that achieves your goals,
as described in this table.

Goal

Steps

Additional Information

Open with associated
tool

Open a file using the
appropriate MATLAB tool
for the file type.

On the Editor, Live Editor, or Home

tab, in the File section, click . |

For example, this option
opens a file with a .m or .mlIx
extension in the Editor and
loads a MAT-file into the
Workspace browser.

Open as text file

Open a file in the Editor
as a text file, even if the
file type is associated with
another application or
tool.

On the Editor tab, in the File section,
click Open =, and select Open as Text.

This 1s useful, for example,
if you have imported a tab-
delimited data file (.dat)
into the workspace and you
find you want to add a data
point. Open the file as text
in the Editor, make your
addition, and then save the
file.

Open function from
within file

Open a local function or
function file from within a
file in the Editor.

Position the cursor on the name within
the open file, and then right-click and
select Open file-name from the
context menu.

You also can use this
method to open a variable or
Simulink model.

For details, see “Open a File
or Variable from Within a
File” on page 24-37.

Reopen file

24-2

At the bottom of the Open = drop-down
list, select a file under Recent Files.

To change the number
of files on the list, click

Open and Save Files

Goal

Steps

Additional Information

Reopen a recently used
file.

@ Preferences, and
then select MATLAB and
Editor/Debugger. Under
Most recently used file
list, change the value for
Number of entries.

Reopen files at startup

At startup, automatically
open the files that were
open when the previous
MATLAB session ended.

On the Home tab, in the

Environment section, click @

Preferences and select MATLAB and
Editor/Debugger. Then, select On
restart reopen files from previous

MATLAB session.

None.

Open file displaying in
another tool

Open a file name
displaying in another
MATLAB desktop tool or
Microsoft tool.

Drag the file from the other tool into

the Editor.

For example, drag files from
the Current Folder browser
or from Windows Explorer.

Open file using a
function

Use the edit or open function.

For example, type the
following to open collatz .m:

edit collatz.m

If collatz.m is not on the
search path or in the current
folder, use the relative or
absolute path for the file.

For special considerations on the Macintosh platform, see “Navigating Within the
MATLAB Root Folder on Macintosh Platforms”.

Save Files

After you modify a file in the Editor, an asterisk (*) follows the file name. This asterisk

indicates that there are unsaved changes to the file.

24-3

24 Coding and Productivity Tips

You can perform four different types of save operations, which have various effects, as
described in this table.

Save Option Steps
Save file to disk and keep file open in the|On the Editor or Live Editor tab, in the
Editor.

=]
File section, click H

Rename file, save it to disk, and make it |1 On the Editor or Live Editor tab, in the
the active Editor document. Original file File section, click Save » and select Save
remains unchanged on disk. As.

2 Specify a new name, type, or both for the
file, and then click Save.

Save file to disk under new name. 1 On the Editor tab, in the File section,
Original file remains open and unsaved. click Save = and select Save Copy As.

MATLAB opens the Select File for
Backup dialog box.

2 Specify a name and type for the backup
file, and then click Save.

Save changes to all open files using 1 On the Editor tab, in the File section,
current file names. click Save = and select Save All.
All files remain open. MATLAB opens the Select File for Save

As dialog box for the first unnamed file.

2 Specify a name and type for any unnamed
file, and then click Save.

3 Repeat step 2 until all unnamed files are
saved.

Recommendations on Saving Files

MathWorks recommends that you save files you create and files from MathWorks

that you edit to a folder that is not in the matlabroot/toolbox folder tree, where
matlabroot is the folder returned when you type matlabroot in the Command
Window. If you keep your files in matlabroot/toolbox folders, they can be overwritten
when you install a new version of MATLAB software.

At the beginning of each MATLAB session, MATLAB loads and caches in memory the
locations of files in the matlabroot/toolbox folder tree. Therefore, if you:

244

Open and Save Files

+ Save files to matlabroot/toolbox folders using an external editor, run rehash
toolbox before you use the files in the current session.

+ Add or remove files from matlabroot/toolbox folders using file system operations,
run rehash toolbox before you use the files in the current session.

+ Modify existing files in matlabroot/toolbox folders using an external editor, run
clear function-name before you use these files in the current session.

For more information, see rehash or “Toolbox Path Caching in MATLAB”.
Backing Up Files

When you modify a file in the Editor, the Editor saves a copy of the file using the same
file name but with an .asv extension every 5 minutes. The backup version is useful if
you have system problems and lose changes you made to your file. In that event, you can
open the backup version, Fi lename.asv, and then save it as Filename.m to use the last
good version of Filename.

Note: The Editor does not save backup copies of live scripts.

To select preferences, click @ Preferences, and then select MATLAB > Editor/
Debugger > Backup Files on the Home tab, in the Environment section. You can
then:

* Turn the backup feature on or off.

+ Automatically delete backup files when you close the corresponding source file.

By default, MATLAB automatically deletes backup files when you close the Editor.
It is best to keep backup-to-file relationships clear and current. Therefore, when you
rename or remove a file, consider deleting or renaming the corresponding backup file.

* Specify the number of minutes between backup saves.
+ Specify the file extension for backup files.
+ Specify a location for backup files

If you edit a file in a read-only folder and the back up Location preference is Source
file directories, then the Editor does not create a backup copy of the file.

24-5

24 Coding and Productivity Tips

Check Code for Errors and Warnings

MATLAB Code Analyzer can automatically check your code for coding problems.

In this section...

“Automatically Check Code in the Editor — Code Analyzer” on page 24-6
“Create a Code Analyzer Message Report” on page 24-11

“Adjust Code Analyzer Message Indicators and Messages” on page 24-12
“Understand Code Containing Suppressed Messages” on page 24-15
“Understand the Limitations of Code Analysis” on page 24-17

“Enable MATLAB Compiler Deployment Messages” on page 24-20

Automatically Check Code in the Editor — Code Analyzer

You can view warning and error messages about your code, and modify your file based
on the messages. The messages update automatically and continuously so you can

see 1f your changes addressed the issues noted in the messages. Some messages offer
additional information, automatic code correction, or both.

Enable Continuous Code Checking

To enable continuous code checking in a MATLAB code file in the Editor:
1

On the Home tab, in the Environment section, click @ Preferences.

2 Select MATLAB > Code Analyzer, and then select the Enable integrated
warning and error messages check box.

3 Set the Underlining option to Underline warnings and errors, and then click
OK.

Note: Preference changes do not apply in live scripts. Continuous code checking is always
enabled.

Use Continuous Code Checking

You can use continuous code checking in MATLAB code files in the Editor:

24-6

Check Code for Errors and Warnings

Open a MATLAB code file in the Editor. This example uses the sample file
lengthofline.m that ships with the MATLAB software:

a

Open the example file:

open(fullfile(matlabroot, "help”, "techdoc”, "matlab_env", ...
"examples”, "lengthofline.m"))

Save the example file to a folder to which you have write access. For the
example, lengthofline.mis saved to C:\my_MATLAB_files.

Examine the message indicator at the top of the message bar to see the Code
Analyzer messages reported for the file:

Red indicates that syntax errors were detected. Another way to detect some
of these errors is using syntax highlighting to identify unterminated character
vectors, and delimiter matching to identify unmatched keywords, parentheses,
braces, and brackets.

Orange indicates warnings or opportunities for improvement, but no errors, were
detected.

Green indicates no errors, warnings, or opportunities for improvement were
detected.

In this example, the indicator is red, meaning that there is at least one error in the

file.
Message Indicator —__
1 function [len,dim=] = lengthofline (hline) -ﬁ
2 of a line object
= % the handle to a -_.____‘_E
4 % The accuracy of the
o % tinct points used to «
[3 %
7 % [LEN,DIM] = LENGTHOFLINE (HLINE) additionally tells
=] 3 2D or 3D by returning either a numeric 2 or 3 in DI!
g % plane parallel to a coordinate plane is considered @ —
10 z
11 % If HLINE i= a matrix of line handles, LEN and DIM w:
12 %
12 L Example: &
4 [Tl 3
check_results.m % | lengthofline.m | Untitled2* =
lenathofline Ln 12 Col 2 OVR

24-7

24 Coding and Productivity Tips

24-8

Click the message indicator to go to the next code fragment containing a message.
The next code fragment is relative to the current cursor position, viewable in the
status bar.

In the lengthofline example, the first message is at line 22. The cursor moves to
the beginning of line 22.

The code fragment for which there is a message is underlined in either red for errors
or orange for warnings and improvement opportunities.

View the message by moving the mouse pointer within the underlined code
fragment.

The message opens in a tooltip and contains a Details button that provides access to
additional information by extending the message. Not all messages have additional
information.

16 % len,dim] = lengthofline([hl h2]) " o
17

18 Cop t 1984-2004 The MathWorks, Inc

19 $Re n: 1.1.6.5 & £Date: 200&6/08/09 23:13:19 & =
20 ~
21 % Find input indices that are not line objects

22 — :mt'naEdle = ~ishandle (hline);

23 - | 4 The value assigned to variable 'nothandle’ might be unused. | Details ¥ | =
24 = notline (mh) = ~ishandle(hIine(nh})} [| ~=stremp('line’,

25 — end

26 S

I l 1 3

Click the Details button.

The window expands to display an explanation and user action.

Modify your code, if needed.

The message indicator and underlining automatically update to reflect changes you
make, even if you do not save the file.

On line 28, hover over prod.

The code is underlined because there is a warning message, and it is highlighted

because an automatic fix is available. When you view the message, it provides a
button to apply the automatic fix.

Check Code for Errors and Warnings

23 = I:.‘_t:n:r: nh = 1:prod(=ize (hline)) o -
24 — notline (nh) = ~ishandle(hline(nh)} || ~strcmp('line"',

25 — end

26

27 — 1len = zeros(size (hline)): £

28 = for ml = l:p:ﬂ—odisize(hline]]

29 24 NUMEL(x) is usually faster than PROD{SIZE(x)). [EJ| compute the length |
30 — IT ~NOCIInNE L]

31 = fld=s = get (hlime (nl));

2= fdata = {'XData',"¥YData',"ZData'}: -

4 i 3

Ln 22 Col 1 OVR

8 Fix the problem by doing one of the following:

+ If you know what the fix is (from previous experience), click Fix.
+ If you are unfamiliar with the fix, view, and then apply it as follows:

a Right-click the highlighted code (for a single-button mouse, press Ctrl+
click), and then view the first item in the context menu.

b Click the fix.
MATLAB automatically corrects the code.

In this example, MATLAB replaces prod(size(hline)) with
numel(hline).

9 Go to a different message by doing one of the following:
To go to the next message, click the message indicator or the next underlined code
fragment.

* To go to a line that a marker represents, click a red or orange line in the indicator
bar.

To see the first error in lengthofline, click the first red marker in the message
bar. The cursor moves to the first suspect code fragment in line 48. The Details
and Fix buttons are dimmed, indicating that there is no more information about
this message and there is no automatic fix.

24-9

24 Coding and Productivity Tips

24-10

— nothandle = ~ishandle (hline); ™|

%)

w
|

for nh = l:prod(size(hline)})

2

24 — notline (nh) = ~ishandle (hline(nh)) || ~strcmp('lines',

25 — end

26 3

:; : @ Line 48: Invalid syntax at ;' Possibly, a), }, or] is missing. | Details » IIEI

29 @ Line 48: Invalid syntax at ')'. Possibly, a), }, or] is missing. |_Details ™ || Fix |

< — —y

30 — @ Line 48 Parse error at ']'; usage might be invalid MATLAB syntax, | Details % || Fix] :\[b

31 = flds = get (hline(nl));

32 = fdarta = {'¥Nata'. '"YNata'. "'7Nata’t: k%

] 1 3
lengthofline Ln 28 Col 15 OVR

Multiple messages can represent a single problem or multiple problems.
Addressing one might address all of them, or after addressing one, the other
messages might change or what you need to do might become clearer.

10 Modify the code to address the problem noted in the message—the message
indicators update automatically.

The message suggests a delimiter imbalance on line 48. You can investigate that as
follows:

a

On the Home tab, in the Environment section, click @ Preferences.
Select MATLAB > Keyboard.
Under Delimiter Matching, select Match on arrow key, and then click OK.

In the Editor, move the arrow key over each of the delimiters to see if MATLAB
indicates a mismatch.

In the example, it might appear that there are no mismatched delimiters.
However, code analysis detects the semicolon in parentheses: data{3}(;),
and interprets it as the end of a statement. The message reports that the two
statements on line 48 each have a delimiter imbalance.

In line 48, change data{3}(;) to data{3}(:).

Now, the underline no longer appears in line 48. The single change addresses
the issues in both of the messages for line 48.

Check Code for Errors and Warnings

Because the change removed the only error in the file, the message indicator at
the top of the bar changes from red to orange, indicating that only warnings and
potential improvements remain.

After modifying the code to address all the messages, or disabling designated messages,
the message indicator becomes green. The example file with all messages addressed has
been saved as lengthofline2._m. Open the corrected example file with the command:

open(fullfile(matlabroot, "help®, "techdoc”, . ..
"matlab_env®, “"examples®,"lengthofline2.m"))

Note: MATLAB does not support all Code Analyzer features in live scripts. Supported
features include code underlining to indicate a warning or error, code highlighting

to depict when an automatic fix is available, the automatic fix button and the details
button. The Code Analyzer message indicator and message bar are not supported.

Create a Code Analyzer Message Report

You can create a report of messages for an individual file, or for all files in a folder using
one of these methods:

* Run a report for an individual MATLAB code file:

1 On the Editor window, click ™.
2 Select Show Code Analyzer Report.

A Code Analyzer Report appears in the MATLAB Web Browser.
3 Modify your file based on the messages in the report.
4 Save the file.

5 Rerun the report to see if your changes addressed the issues noted in the
messages.

* Run a report for all files in a folder:

1 On the Current Folder browser, click ™.
2 Select Reports > Code Analyzer Report.

3 Modify your files based on the messages in the report.

24-11

24 Coding and Productivity Tips

24-12

For details, see “MATLAB Code Analyzer Report” on page 24-44.
4 Save the modified file(s).

5 Rerun the report to see if your changes addressed the issues noted in the
messages.

Note: MATLAB does not support creating Code Analyzer reports for live scripts. When
creating a report for all files in a folder, all live scripts in the selected folder are excluded
from the report.

Adjust Code Analyzer Message Indicators and Messages

Depending on the stage at which you are in completing a MATLAB file, you might want
to restrict the code underlining. You can do this by using the Code Analyzer preference
referred to in step 1, in “Check Code for Errors and Warnings” on page 24-6. For
example, when first coding, you might prefer to underline only errors because warnings
would be distracting.

Code analysis does not provide perfect information about every situation and sometimes,
you might not want to change the code based on a message. If you do not want to change
the code, and you do not want to see the indicator and message for that line, suppress
them. For the lengthofline example, in line 49, the first message is Terminate
statement with semicolon to suppress output (in functions). Adding a
semicolon to the end of a statement suppresses output and is a common practice. Code
analysis alerts you to lines that produce output, but lack the terminating semicolon. If
you want to view output from line 49, do not add the semicolon as the message suggests.

There are a few different ways to suppress (turn off) the indicators for warning and error
messages:

+ “Suppress an Instance of a Message in the Current File” on page 24-13

* “Suppress All Instances of a Message in the Current File” on page 24-13

+ “Suppress All Instances of a Message in All Files” on page 24-14

+ “Save and Reuse Code Analyzer Message Settings” on page 24-14

You cannot suppress error messages such as syntax errors. Therefore, instructions on
suppressing messages do not apply to those types of messages.

Check Code for Errors and Warnings

Note: Code Analyzer Message preference changes do not apply in live scripts. All Code
Analyzer messages are always enabled.

Suppress an Instance of a Message in the Current File

You can suppress a specific instance of a Code Analyzer message in the current file. For
example, using the code presented in “Check Code for Errors and Warnings” on page
24-6 , follow these steps:

1

In line 49, right-click at the first underline (for a single-button mouse, press
Ctrl+click).

From the context menu, select Suppress "Terminate statement with
semicolon...' > On This Line.

The comment %#0k<NOPRT> appears at the end of the line, which instructs MATLAB
not to check for a terminating semicolon at that line. The underline and mark in the
indicator bar for that message disappear.

If there are two messages on a line that you do not want to display, right-click
separately at each underline and select the appropriate entry from the context menu.

The %#0k syntax expands. For the example, in the code presented in “Check Code
for Errors and Warnings” on page 24-6, ignoring both messages for line 49 adds
%#0k<NBRAK,NOPRT>,

Even if Code Analyzer preferences are set to enable this message, the specific
instance of the message suppressed in this way does not appear because the %#ok
takes precedence over the preference setting. If you later decide you want to check
for a terminating semicolon at that line, delete %#0k<NOPRT> from the line.

Suppress All Instances of a Message in the Current File

You can suppress all instances of a specific Code Analyzer message in the current file.
For example, using the code presented in “Check Code for Errors and Warnings” on page
24-6, follow these steps:

1

In line 49, right-click at the first underline (for a single-button mouse, press
Ctrl+click).

2 From the context menu, select Suppress '"Terminate statement with

semicolon...! > In This File.

24-13

24 Coding and Productivity Tips

24-14

The comment %#ok<*NOPRT> appears at the end of the line, which instructs MATLAB
not to check for a terminating semicolon throughout the file. All underlines and marks in
the message indicator bar that correspond to this message disappear.

If there are two messages on a line that you do not want to display anywhere in the
current file, right-click separately at each underline, and then select the appropriate
entry from the context menu. The %#o0k syntax expands. For the example, in the code
presented in “Check Code for Errors and Warnings” on page 24-6, ignoring both
messages for line 49 adds %#0ok<*NBRAK , *NOPRT>.

Even if Code Analyzer preferences are set to enable this message, the message does not
appear because the %#ok takes precedence over the preference setting. If you later decide
you want to check for a terminating semicolon in the file, delete %#0k<*NOPRT> from the
line.

Suppress All Instances of a Message in All Files

You can disable all instances of a Code Analyzer message in all files. For example, using
the code presented in “Check Code for Errors and Warnings” on page 24-6, follow
these steps:

1 Inline 49, right-click at the first underline (for a single-button mouse, press
Ctrl+click).

2 From the context menu, select Suppress 'Terminate statement with
semicolon...' > In All Files.

This modifies the Code Analyzer preference setting.

If you know which message or messages you want to suppress, you can disable them
directly using Code Analyzer preferences, as follows:

] On the Home tab, in the Environment section, click @ Preferences.

2 Select MATLAB > Code Analyzer.

3 Search the messages to find the ones you want to suppress.

4 Clear the check box associated with each message you want to suppress in all files.
5 Click OK.

Save and Reuse Code Analyzer Message Settings

You can specify that you want certain Code Analyzer messages enabled or disabled, and
then save those settings to a file. When you want to use a settings file with a particular

Check Code for Errors and Warnings

file, you select it from the Code Analyzer preferences pane. That setting file remains in
effect until you select another settings file. Typically, you change the settings file when
you have a subset of files for which you want to use a particular settings file.

Follow these steps:
1

On the Home tab, in the Environment section, click @ Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Code Analyzer.

3 Enable or disable specific messages, or categories of messages.

4 Click the Actions button @"', select Save as, and then save the settings to a txt
file.

5 Click OK.

You can reuse these settings for any MATLAB file, or provide the settings file to another
user.

To use the saved settings:

1

On the Home tab, in the Environment section, click @ Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Code Analyzer.
3 Use the Active Settings drop-down list to select Browse....

The Open dialog box appears.

4 Choose from any of your settings files.

The settings you choose are in effect for all MATLAB files until you select another
set of Code Analyzer settings.

Understand Code Containing Suppressed Messages
If you receive code that contains suppressed messages, you might want to review those

messages without the need to unsuppress them first. A message might be in a suppressed
state for any of the following reasons:

24-15

24 Coding and Productivity Tips

24-16

One or more %#ok<message-1D> directives are on a line of code that elicits a
message specified by <message- 1D>.

One or more %#ok<*message- D> directives are in a file that elicits a message
specified by <message-1D>.

It is cleared in the Code Analyzer preferences pane.
It is disabled by default.

To determine the reasons why some messages are suppressed:

1

Search the file for the %#ok directive and create a list of all the message IDs
associated with that directive.

On the Home tab, in the Environment section, click @ Preferences.

The Preferences dialog box opens.
Select MATLAB > Code Analyzer.

In the search field, type msgid: followed by one of the message IDs, if any, you
found in step 1.

The message list now contains only the message that corresponds to that ID. If the
message 1s a hyperlink, click it to see an explanation and suggested action for the
message. This can provide insight into why the message is suppressed or disabled.
The following image shows how the Preferences dialog box appears when you enter
msgid:CPROP in the search field.

sgid:CPROP ® v

Default Settings
=l Unused or Unnecessary Constructions
& Confusing function call. Did you mean te reference property ...

Check Code for Errors and Warnings

Click the * button to clear the search field, and then repeat step 4 for each message
ID you found in step 1.

Display messages that are disabled by default and disabled in the Preferences
pane by clicking the down arrow to the right of the search field. Then, click Show
Disabled Messages.

Review the message associated with each message ID to understand why it is
suppressed in the code or disabled in Preferences.

Understand the Limitations of Code Analysis

Code analysis is a valuable tool, but there are some limitations:

Sometimes, it fails to produce Code Analyzer messages where you expect them.

By design, code analysis attempts to minimize the number of incorrect messages it
returns, even if this behavior allows some issues to go undetected.

Sometimes, it produces messages that do not apply to your situation.

When provided with message, click the Detail button for additional information,
which can help you to make this determination. Error messages are almost always
problems. However, many warnings are suggestions to look at something in the code
that is unusual and therefore suspect, but might be correct in your case.

Suppress a warning message if you are certain that the message does not apply to
your situation. If your reason for suppressing a message is subtle or obscure, include
a comment giving the rationale. That way, those who read your code are aware of the
situation.

For details, see “Adjust Code Analyzer Message Indicators and Messages” on page
24-12.

These sections describe code analysis limitations regarding the following:

“Distinguish Function Names from Variable Names” on page 24-18
“Distinguish Structures from Handle Objects” on page 24-18

“Distinguish Built-In Functions from Overloaded Functions” on page 24-19
“Determine the Size or Shape of Variables” on page 24-19

“Analyze Class Definitions with Superclasses” on page 24-19

24-17

24 Coding and Productivity Tips

24-18

+ “Analyze Class Methods” on page 24-19
Distinguish Function Names from Variable Names

Code analysis cannot always distinguish function names from variable names. For

the following code, if the Code Analyzer message is enabled, code analysis returns the
message, Code Analyzer cannot determine whether xyz is a variable

or a function, and assumes it is a function. Code analysis cannot make a
determination because Xyz has no obvious value assigned to it. However, the program
might have placed the value in the workspace in a way that code analysis cannot detect.

function y=foo(x)

y = Xyz(X);
end

For example, in the following code, Xyz can be a function, or can be a variable loaded
from the MAT-file. Code analysis has no way of making a determination.

function y=foo(x)
load abc.mat
y = xyz(X);
end
Variables might also be undetected by code analysis when you use the eval, evalc,

evalin, or assignin functions.
If code analysis mistakes a variable for a function, do one of the following:

+ Initialize the variable so that code analysis does not treat it as a function.

* For the load function, specify the variable name explicitly in the load command line.
For example:

function y=foo(x)
load abc.mat xyz
y = xyz(xX);

end

Distinguish Structures from Handle Objects

Code analysis cannot always distinguish structures from handle objects. In the following
code, if X 1s a structure, you might expect a Code Analyzer message indicating that the

Check Code for Errors and Warnings

code never uses the updated value of the structure. If X is a handle object, however, then
this code can be correct.

function foo(x)
X.a = 3;
end

Code analysis cannot determine whether X is a structure or a handle object. To minimize
the number of incorrect messages, code analysis returns no message for the previous
code, even though it might contain a subtle and serious bug.

Distinguish Built-In Functions from Overloaded Functions

If some built-in functions are overloaded in a class or on the path, Code Analyzer
messages might apply to the built-in function, but not to the overloaded function you are
calling. In this case, suppress the message on the line where it appears or suppress it for
the entire file.

For information on suppressing messages, see “Adjust Code Analyzer Message Indicators
and Messages” on page 24-12.

Determine the Size or Shape of Variables

Code analysis has a limited ability to determine the type of variables and the shape

of matrices. Code analysis might produce messages that are appropriate for the most
common case, such as for vectors. However, these messages might be inappropriate for
less common cases, such as for matrices.

Analyze Class Definitions with Superclasses

Code Analyzer has limited capabilities to check class definitions with superclasses.

For example, Code Analyzer cannot always determine if the class is a handle class,

but it can sometimes validate custom attributes used in a class if the attributes are
inherited from a superclass. When analyzing class definitions, Code Analyzer tries to use
information from the superclasses but often cannot get enough information to make a
certain determination.

Analyze Class Methods

Most class methods must contain at least one argument that is an object of the same
class as the method. But it does not always have to be the first argument. When it is,
code analysis can determine that an argument is an object of the class you are defining,

24-19

24 Coding and Productivity Tips

24-20

and it can do various checks. For example, it can check that the property and method
names exist and are spelled correctly. However, when code analysis cannot determine
that an object is an argument of the class you are defining, then it cannot provide these
checks.

Enable MATLAB Compiler Deployment Messages

You can switch between showing or hiding Compiler deployment messages when you
work on a file. Change the Code Analyzer preference for this message category. Your
choice likely depends on whether you are working on a file to be deployed. When you
change the preference, it also changes the setting in the Editor. The converse is also true
—when you change the setting from the Editor, it effectively changes this preference.
However, if the dialog box is open at the time you modify the setting in the Editor, you
will not see the changes reflected in the Preferences dialog box. Whether you change the
setting from the Editor or from the Preferences dialog box, it applies to the Editor and to
the Code Analyzer Report.

To enable MATLAB Compiler™ deployment messages:

1
On the Home tab, in the Environment section, click @ Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Code Analyzer.

3 Click the down arrow next to the search field, and then select Show Messages in
Category > MATLAB Compiler (Deployment) Messages.

4 Click the Enable Category button.

Clear individual messages that you do not want to display for your code (if any).

(6.}

6 Decide if you want to save these settings, so you can reuse them next time you work
on a file to be deployed.

The settings txt file, which you can create as described in “Save and Reuse Code
Analyzer Message Settings” on page 24-14, includes the status of this setting.

Improve Code Readability

Improve Code Readability

In this section...

“Indenting Code” on page 24-21
“Right-Side Text Limit Indicator” on page 24-23
“Code Folding — Expand and Collapse Code Constructs” on page 24-23

Indenting Code

Indenting code makes reading statements such as whi le loops easier. To set and apply
indenting preferences to code in the Editor:

1

On the Home tab, in the Environment section, click @ Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Editor/Debugger > Language.

Choose a computer language from the Language drop-down list.

w

4 In the Indenting section, select or clear Apply smart indenting while typing,
depending on whether you want indenting applied automatically, as you type.

If you clear this option, you can manually apply indenting by selecting the lines
in the Editor to indent, right-clicking, and then selecting Smart Indent from the
context menu.

5 Do one of the following:

If you chose any language other than MATLAB in step 2, click OK.

+ If you chose MATLAB in step 2, select a Function indenting format, and then
click OK. Function indent formats are:
+ Classic — The Editor aligns the function code with the function declaration.

*+ Indent nested functions — The Editor indents the function code within
a nested function.

« Indent all functions — The Editor indents the function code for both
main and nested functions.

This image illustrates the function indenting formats.

24-21

24 Coding and Productivity Tips

1 % Indenting Preferences

2

3 % Classic

4 function classic one

== disp('Main function code')

& function classic two

7 - disp('Nested function code')
g8 — end

9 - end

10

11 % Indent Nested Functions

12 function nested one

13 — disp('Main function code')

14 function nested two

a A= disp('Nested function code')
16 — end

17 — end

18

15 % Indent 211 Functions

20 function all one

21 = disp('Hain function code')
22 function all two

23 = disp('Nested function code')
24 — end

25 — end

26 |

Note: Indenting preferences are not supported for MATLAB live scripts, TLC, VHDL, or
Verilog.

Regardless of whether you apply indenting automatically or manually, you can move
selected lines further to the left or right, by doing one of the following:

On the Editor tab, in the Edit section, click , 'F"_El, or LET. In live scripts, this
functionality is available on the Live Editor tab, in the Format section.

* Pressing the Tab key or the Shift+Tab key, respectively.
This works differently if you select the Editor/Debugger Tab preference for Emacs-
style Tab key smart indenting—when you position the cursor in any line or

select a group of lines and press Tab, the lines indent according to smart indenting
practices.

24-22

Improve Code Readability

Right-Side Text Limit Indicator

By default, a light gray vertical line (rule) appears at column 75 in the Editor, indicating
where a line exceeds 75 characters. You can set this text limit indicator to another value,
which is useful, for example, if you want to view the code in another text editor that has
a different line width limit. The right-side text limit indicator is not supported in live
scripts.

To hide, or change the appearance of the vertical line:

1
On the Home tab, in the Environment section, click @ Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Editor/Debugger > Display.
3 Adjust the settings in the Right-hand text limit section.

Note: This limit is a visual cue only and does not prevent text from exceeding the limit.
To wrap comment text at a specified column number automatically, adjust the settings in
the Comment formatting section under MATLAB > Editor/Debugger > Language
in the Preferences dialog box.

Code Folding — Expand and Collapse Code Constructs

Code folding is the ability to expand and collapse certain MATLAB programming
constructs. This improves readability when a file contains numerous functions or other
blocks of code that you want to hide when you are not currently working with that part of
the file. MATLAB programming constructs include:

* Code sections for running and publishing code

* Class code

+ For and parfor blocks

* Function and class help

* Function code

To see the entire list of constructs, select Editor/Debugger > Code Folding in the
Preferences dialog box.

24-23

24 Coding and Productivity Tips

24-24

To expand or collapse code, click the plus [*/ or minus sign |- that appears to the left of
the construct in the Editor.

To expand or collapse all of the code in a file, place your cursor anywhere within the file,
right-click, and then select Code Folding > Expand All or Code Folding > Fold All
from the context menu.

Note: Code folding is not supported in live scripts.

View Folded Code in a Tooltip

You can view code that is currently folded by positioning the pointer over its ellipsis
The code appears in a tooltip.

The following image shows the tooltip that appears when you place the pointer over the
ellipsis on line 23 of lenghtofline.m when a for loop is folded.

20 e
21 %2 Find input indices that are not line cobjects

22 - nothandle = ~ishandle (hline);

23 - for nh = l:prod(=size(hline))

28 for nh = 1:prod(size(hline))

= len = zeros (size(hline)): netline{nh) = ~ishandlefhline(nh)) || ~stremp(ling', lower{get(hline(nh), 'type)));

28 — for nl = 1l:prod(size(hline))|end

52

53 % If some indices are not lines, fill the results with NaNs. |
54 - if any(notline(:)) 3

55 - warning ('length 1WithNaNs', ...

56 '\n%s of ects are being filled with %s.°',

57 'Lengths', 'NaNs', "Dimensions', 'NaNs')

8 — len(notline) = NaN; &

Print Files with Collapsed Code

If you print a file with one or more collapsed constructs, those constructs are expanded in
the printed version of the file.

Code Folding Behavior for Functions that Have No Explicit End Statement

If you enable code folding for functions and a function in your code does not end with an
expl